
AD--A2. 8 49 9
AMI/GOI/ENS/9410-05

DTIC
ELECTE
APR 221994 U

v F

A HEURISTIC APPROACH TO DETERMINING
CARGO FLOW AND SCHEDULING FOR

AIR MOBILITY COMMAND'S CHANNEL CARGO SYSTEM

THESIS

John Fitzsimmons Jr., Captain, U.S. Air Force
John Walker, Captain, U.S. Air Force

AFITIGOR/ENSI94M-05

94--12267

Approved for public release; distribution unlimited

94 -- • " "

The views expressed in this thesis are those of the autho-i and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

Accesion For

NTIS CRA&M
DTIC TAE

By
Dist, ibt~tion' I

Availability C.'•es

ai l a: ,lor
Dist Special

AA L

AFIT/GOR/ENS/94M-05

A HEURISTIC APPROACH TO DETERMINING

CARGO FLOW AND SCHEDULING FOR

AIR MOBILITY COMMAND'S CHANNEL CARGO SYSTEM

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

John Fitzsimmons Jr., B.S. John Walker, B.A.

Captain, U.S. Air Force Captain, U.S. Air Force

March 1994

Approved for public release; distribution unlimited

Thesis Approval

STUDENTS: Captain John Fitzsimmons Jr. CLASS: GOR-94M
Captain John Walker

THESIS TITLE: A Heuristic Approach to Determining Cargo Flow and Scheduling for
Air Mobility Command's Channel Cargo System

DEFENSE DATE: 25 February 1994

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Co-advisor LTC James T. Moore/ENS _ _ _- __ __ _

Co-advisor MAJ John J. Borsi/ENS

Admow/edgeixts

We are indebted to many people who provided their assistance in this research. The

process could not have started, progressed, and ended without the guidance and patience of our

advisors, LTC James T. Moore and MAJ John J. Borsi. They made it blindingly clear that the

thesis process can be completed with persistence and a bit of perspiration. We are also grateful

to several folks at the AMC Force Structure Analysis Office: ILT Jonathan Robinson and Mr.

Alan Whisman. They answered our endless questions and data requests punctually and

professionally. Additionally, thanks goes to Captain Jean Steppe, who took time out of her

already hectic schedule to provide much-needed feedback. We would also like to express our

appreciation to our families, whose constant support helped us maintain a positive outlook.

John Fitzsimmons Jr.
John Walker

Tobk of Contents

Acknowledgements ii

List of Figures vii

List of Tables ix

Abstract x

I. Introduction I

1.1 General Issue 1

1.2 Background 1

1.3 Previous AFIT Research 5

1.4 Research Objective 5

1.5 Problem Statement 6

1.6 Assumptions 7

U1. Literature Review 9

I. 1 Scope and Organization of the Review 9

11.2 Previous Efforts 9

U1.3 Limitations of Prior Approaches 10

II.4 Heuristic Approaches 11

11.4.1 Cargo Flow 11

11.4.2 Schedule Improvement Approaches 13

mI. Overall Methodology 14

111.1 General 14

m.2 Integration 14

iii

M1.2.1 Flow Pattern Improvement 16

M.2.2 Lack of Flow Pattern Improvement 16

M.3 The Network 17

11.4 Reducing the Problem Size 21

111.5 User-Preferences 23

IV. Flow Methodology 24

IV.I General 24

IV.2 Motivation fbr the Flow Heuristic Approach 24

IV.3 Description of the Cargo Flow Heuristic 25

IV.4 Shortest Path Algorithm 27

IV.5 Alternate Path Selection 27

IV.6 Path Compression 30

IV.7 Analysis of the Out-and-Back Phenomenon 30

V. Schedule Improvement 32

V.I General 32

V.2 The Schedule Improvement Algorithm 33

V.3 Requirements vs. Frequency Missions 42

V.4 User-specified Parameters 43

V.4.1 Mission Order 43

V.4.2 Passes Per Iteration of the Schedule
Improvement Algorithm 43

VI. Results 44

VI.I General 44

VI.2 Testing Strategy 44

iv

VI.2.1 Objectives 44

VI.2.2 Design of the Testing 45

VI.3 Convergence of the Iterative Improvement Algorithm 45

VI.4 Justification for Reflowing Cargo 47

VI.5 Flowed Cargo 49

VI.6 Reflowed Cargo 49

VI.7 Parametric Analysis 51

VI.7.1 Cargo Flow Priority 51

VI.7.2 Mission Order 53

VI.7.3 Passes Per Iteration of the Schedule
Improvement Algorithm 56

VII. Conclusions and Recommendations 59

VII.l General 59

VII.2 Strengths of the Iterative Improvement Algorithm 59

VII.3 Recommendations for Future Research 59

VII.4 Validation 61

Appendix A: Program Execution Guide 62

Appendix B: Main Program Listing 63

Appendix C: Program Creating the Initial Schedule 112

Appendix D: STORM/CARGPREP Schedule for the Sub-Problem 117

Appendix E: Aircraft Capacities and Ground/RON Times 118

Appendix F: Flying Times Between Airbases 119

Appendix G: Routes in the E/SWA Sub-Problem 120

Appendix H: Commodities of the E/SWA Sub-Problem 122

v

Appendix I: Initial Schedule for the E/SWA Sub-Problem 123

Appendix J: User-defined Parameters 124

Appendix K: Approved Transshipment Bases for the E/SWA Sub-Problem 125

Appendix L: Mission Utilization Output 126

Appendix M: Sample Flow Pattern Output 127

Appendix N: Results of Each Iteration 129

Appendix 0: Test Runs 131

Appendix P: Output Conversion Subroutine 133

Bibliography 134

Vitae 136

vi

So Aue Figwws

Figure 1. Current AMC Schedule Generation Process 3

Figure 2. Proposed AMC Schedule Generation Process 7

Figure 3. Iterative Nature of the Process 15

Figure 4. Three Types of Nodes in the Network 19

Figure 5. Times and ICAOs Associated with the Network 19

Figure 6. Arcs Connecting Source Node 1 with Base 'A' 20

Figure 7. Transshipment Arcs for Airbase 'B' 20

Figure 8. Zero-cost Arcs Connecting Airbase 'C' with its Sink Node 21

Figure 9. Steps of the Cargo Flow Heuristic 26

Figure 10. An Initial Path Found 29

Figure 11. A Superior Alternate Path 29

Figure 12. Prevention of the Out-and-Back Phenomenon 31

Figure 13. Schedule Improvement Algorithm 34

Figure 14. Determination of the Time Shift 37

Figure 15. The Network Before and After a Time Shift of 0.2 Days 38

Figure 16. Reflow Conditions 39

Figure 17. Reduction in CWTIS for Test Run 8 46

Figure 18. Initial versus Final TIS Distribution for Run 8 47

Figure 19. Percent Reduction in CWTIS 47

Figure 20. Percent Reduction in CWTIS on the First Iteration 48

Figure 21. Tons with > 4 Days TIS 48

Figure 22. Cargo Flowed 50

Figure 23. Cargo Flowed on Run 5 50

vii

Figure 24. Percentages of Cargo Reflowed on First Iteration 51

Figure 25. Comparison of Set 1 54

Figure 26. Comparison of Set 2 54

Figure 27. Comparison of Set 3 55

Figure 28. Comparison of Set 4 55

Figure 29. TIS Distributions for Run 8 58

viii

Lt of Tabks

Table 1. The Effect of Cargo Flow Priority on the Final Flow Pattern 52

Table 2. Best and Worst Mission Orders 56

Table 3. Influence of the Number of Passes on the Solution 57

Table 4. TIS Distributions for the Multiple- and Single-Pass Run 8 58

ix

AFIT/GORIENS/94M-05

This research investigated a heuristic approach to schedule aircraft for the channel

cargo system of the United States Air Force's Air Mobility Command (AMC). Given

cargo/frequency of visit requirements, a fleet of aircraft, and possible routes, the objective of

this research was to develop, implement, and test an iterative procedure to efficiently schedule

and load aircraft in order to maximize the flow of cargo through the channel cargo system.

Once a level of flow was established, attempts were made to minimize cost in terms of

cumulative weighted time-in-system (CWTIS). A minimum cost flow heuristic, incorporating

a successive shortest path algorithm, was coupled with a critical arc schedule improvement

heuristic. Our procedure iterated between these two heuristics to generate a cargo flow pattern

and aircraft schedule. This research demonstrated the usefulness and efficiency of this

heuristic in planning airlift for the channel cargo system. The FORTRAN programs which

implement the heuristics are compatible with current AMC scheduling/advance planning tools.

Given this compatibility, additional testing in conjunction with AMC's current planning tools

(STORM, CARGPREP, and CARGOSIM) is warranted. Pending successful testing in this

environment, implementation of these methods is recommended.

X

A HEURISTIC APPROACH TO DETERMINING
CARGO FLOW AND SCHEDULING

FOR AIR MOBILITY COMMAND'S CHANNEL CARGO SYSTEM

L l1rordudion

LI Geaeml Iss

The United States Air Force's Air Mobility Command (AMC) is responsible for

providing global logistical support to all U.S. military forces. This mission is accomplished

through use of an extensive force that includes military aircraft, airbases, aircrews,

maintenance facilities, and support personnel. Given the importance and resource expenditure

of this mission, AMC maintains various organizations to ensure that routing and scheduling of

its airlift resources is performed as effectively as possible. This research investigated a method

for improving the routing and scheduling of these airlift resources.

L2 Background

AMC's channel cargo system is a crucial logistical system for which routing and

scheduling is planned on a monthly basis. A channel consists of a pair of origin and

destination airbases, known as an O-D pair, between which AMC provides regularly scheduled

airlift. Channels are established in response to various demands, such as the pickup and

delivery of cargo or passengers.

Flexibility within the system allows for either direct connections between O-D pairs,

where a cargo aircraft would fly directly from the origin airbase to the destination airbase, or

may entail several intermediate stops before arriving at the destination. In addition, certain 0-

D pairs may not be serviced by a single route which connects the two bases. In this

circumstance, transshipping is required, which occurs when cargo is downloaded from one

aircraft and uploaded onto another aircraft. Although this requires additional time and

resources, it is an essential element of the channel cargo system and aids in increasing the

utilization of aircraft and routes (Carter and Litko, undated:2).

The channels are classified as either frequency channels or requirements channels.

Frequency channels, such as those missions typically flown to embassies, are scheduled at

specified intervals and are not driven by cargo requirements. Requirements channels are routes

flown between O-D pairs, with the number of missions flown based on the amount of cargo to

be transported.

Given the importance of the channel cargo system's mission, a backup has been

established in the event that AMC's assets cannot deliver all cargo as needed. This backup is

the Civil Reserve Air Fleet (CRAF), consisting of civilian commercial transportation that is

contracted as necessary by AMC's Tanker Airlift Control Center (TACC). The CRAF is an

essential, significant source of augmentation for the channel system on an ongoing basis. In

the past, expenditures on CRAF augmentation have exceeded expenditures on channel airlift

(Shepherd, 1990:14). In dollar figures, the cost of augmenting AMC aircraft with commercial

transport typically runs over $100 million annually (Ackley et al., 1991).

The advance planning for this channel cargo system is currently performed in a two-

phase process which determines the number and types of missions flown, as well as a tentative

schedule (see Figure 1). The primary goal of this advance planning is efficient use of channel

system resources, including measures of timeliness and aircraft utilization (Robinson, 20

September 1993). In the past, AMC has accomplished this process on a monthly basis and as

needed in response to special studies.

The first phase of the process uses a linear programming (LP) model, STORM

(Strategic Transport Optimal Routing Model), to determine the number of missions needed.

The goal of this LP is to select a mix of routes and aircraft to meet specified monthly cargo

and frequency requirements while minimizing overall system cost. Overall system cost

2

PHASELP MODEL
PHASE ISTORM

N OTA HEURISTIC

L CARGPREP
I

SIMSCRIPT _NMULATION
PHASE II

CARGO~M a

MANUAL ITERATION

Figure 1. Current AMC Schedule Generation Process

includes military aircraft operations, cargo handling costs (e.g. transshipping), and commercial

aircraft leasing (Ackley et al., undated:2). Limitations of the model include a restriction of at

most one transshipment, lack of a time element in terms of delivery timeliness, and initial non-

integer solutions (Whisman, undated:6-7).

The second phase employs a SIMSCRIPT HI.5 discrete event simulation model,

CARGOSIM, to validate the output from the STORM model. The objectives of the validation

are to ensure the realism of the STORM output with respect to aircraft utilization and delivery

timeliness (Del Rosario, 1993:4). The CARGOSIM model, in addition to requiring the

STORM output of number of missions and aircraft, also requires a monthly flight schedule.

This schedule is generated by a simple FORTRAN program called CARGPREP. CARGPREP

evenly spaces identical missions generated by STORM throughout a given month (Robinson,

3

20 September 1993). For example, if a mission is to be flown four times during a month,

CARGPREP would schedule successive missions exactly one week apart.

With the necessary inputs of the schedule, routes, cargo generation information, and

aircraft properties, CARGOSIM simulates aircraft and cargo flow through the channel system

and outputs measures of merit such as utilization, movement times, and port backlog

(Robinson, 20 September 1993). The model factors in the element of timeliness of cargo

delivery, which was lacking in the STORM model, in terms of average delay per cargo ton

shipped between each O-D pair (Moul, 1992:1-5).

At this stage of the process, the Uniform Materiel Movement and Issue Priority System

(UMMIPS) time standards are referenced. UMMIPS standards are described in the DoD

Materiel Management Regulation (DoD 4140.1-R):

Materiel shall be furnished to users on time, subject to constraints of resources
and capability. The UMMIPS time standards shall be considered overall
logistics system limits for the satisfaction of material requirements.
Operational systems shall be designed to meet and, where economically
feasible, to surpass the prescribed time standards (DoD 4140. 1-R:5-19).

The UMMIPS time standards are in calendar days and vary according to origin and destination

of the materiel. Within the channel cargo system, this allowable time delay typically varies

between four and eight calendar days (Robinson, 20 September 1993).

The AMC analyst compares the simulation results to UMMIPS standards in order to

modify the initial schedule from CARGPREP by changing the flight schedule (i.e. mission

takeoff times) or to change the STORM output by varying the number of missions (Del

Rosario, 1993:5). The modified schedule/mission set is reprocessed through CARGOSIM and

compared to UMMIPS time standards again.

The analyst continues this manual iterative process of adjusting the schedule and

checking its validity until UMMIPS standards are met (Rau, 1993:6). The process is involved

and can take up to four days to complete. This two-phase process has also been used for other

4

applications, such as special studies of proposed modifications to the channel system (Del

Rosario, 1993:6).

1.3 Previoe AFiT Research

The Air Force Institute of Technology (AFMIT has conducted several research projects

investigating ways to improve the AMC scheduling process: Moul (1992), Del Rosario

(1993), and Rau (1993). The work of Del Rosario and Rau is most applicable to this research

(all three efforts are discussed in more detail in Chapter I).

The research by Del Rosario was a mathematical programming approach to

flowing cargo with a multi-period, multi-commodity network which modeled the channel cargo

system (Del Rosario, 1993). The model was successful in flowing cargo within one of the

geographic areas of the channel system for a week; however, the method had several

limitations such as an "out-and-back" phenomenon and inability to model the large size of the

channel system (Del Rosario, 1993: 75-78).

Rau's work was a mathematical programming approach to scheduling aircraft with a

general job-shop model (Rau, 1993). The methodology was partially successful for a reduced

size problem; however, it proved to be an inefficient use of linear programming techniques and

failed to consider reflow of the cargo (Borsi, 23 July 1993).

The cargo flow model by Del Rosario was intended to be merged with the scheduling

model by Rau. The limitations of the models prevented a successful merger.

L4 Research Objective

The objective of this research was to develop an iterative process for scheduling airlift

and flowing cargo that reduces cumulative weighted time-in-system (CWT7S) while maintaining

or increasing cargo flow quantity. The objective was essentially the same as the thesis

objectives of Del Rosario and Rau, who attempted to develop a two-step iterative process

5

originally proposed by Major John Borsi of the Air Force Institute of Technology (Borsi, 6

August 1992).

In this research, this process consisted of a cargo flow heuristic and a schedule

Improvement heuristic. The iterative nature of the process and the individual heuristics are

discussed in later chapters. Figure 2 outlines the proposed modifications to AMC's scheduling

process.

The objective of improving the schedule for the channel cargo system via reducing

CWTIS will result in more efficient utilization of AMC airlift/personnel resources. This

equates to saving the command money by allowing more cargo to be shipped on time by AMC

assets and by transporting less commercially.

Additionally, a streamlined routing and scheduling methodology, compatible with the

current scheduling process, could liberate AMC analysts from the current time-consuming

three to four day process to evaluate the mission output by STORM and CARGPREP.

Efficiency in advance planning and special studies will also be a benefit.

L5 Problem Statement

Additional research is required to streamline the advance planning process for AMC's

channel cargo system. Given cargo/frequency of visit requirements, a fleet of aircraft, and

possible routes, the goal is to develop, implement, and test an iterative, heuristic approach to

effectively and efficiently schedule and load aircraft in order to increase the channel cargo

system's efficiency by maximizing and maintaining cargo flow while reducing cumulative

weighted time-in-system (CW7IS).

6

PHASE I

FORTRAN HEURISTIC

PROPOSEDP
FORTRAN HEURISTIC

CARGO FLOW

PROPOSED RTMODULE ITRT

FORTRAN HEURISTIC

SCHEDULE IMPROVEMENT

PHASE II CROI

Figure 2. Proposed AMC Schedule Generation Process

L6 Assumpqins

Given this approach to modeling the channel cargo system, the following simplifying

assumptions were used:

(1) All cargo requirements between origin-destination pairs are known with certainty.

(2) Cargo is classified by weight only and can be divided into an infinite number of

subsets. Any mixture of cargo is allowed on a single aircraft. Other characteristics, such as

7

size and priority, are assumed to be the same for all cargo. Passenger requirements are not

considered and do not affect aircraft cargo capacity.

(3) The number/type of aircraft available are known and remain constant.

(4) Each aircraft type has a specific cargo weight limitation. This weight limitation is

not contingent on aircraft volume limitations. In accordance with previous AMC studies, the

aircraft-specific weight limits were reduced appropriately to prevent violations of aircraft

volume limits, as well as to realistically model loading efficiencies (Robinson, 20 September

1993). This weight limit reduction equated to using 1.5 tons per pallet instead of 2.3 tons per

pallet in calculations.

(5) Airbases were assumed to be capable of handling an unlimited amount of aircraft

and cargo and were assumed to be available 24 hours a day.

(6) Maximizing the cargo load of each aircraft was not considered. An aircraft did not

need to be fully loaded before it could take off.

(7) Based on the results of Moul and Rau, CWTIS was considered an appropriate

measure with respect to minimizing cumulative delay enroute (Moul, 1992; Rau, 1993).

CWTIS is the cumulative sum of each cargo's weight multiplied by its time-in-system (MIS).

TIS consists of all flight times plus any delay encountered enroute, including the delay

encountered when cargo is at its origin airbase awaiting initial transportation.

8

11. L&eavre Review

ILl Sope anl Orgauadao ef du Review

Given the background concerning the channel cargo system and AMC's schedule

generation process, this review briefly discusses some previous thesis efforts, including some

of their shortcomings and limitations. These limitations provide a baseline for the alternative

method discussed in Chapter m. Heuristics are then defined in relation to cargo flow and

schedule improvement. Additionally, this review provides examples of heuristic applications

in related routing and scheduling problems. A rudimentary knowledge of networks, maximum

flow/minimum cost problems, and shortest path algorithms is assumed.

11.2 Previous Effors

Graduate students at the Air Force Institute of Technology (AFIT) have conducted

numerous research projects investigating ways to improve the AMC channel scheduling

process: Moul (1992), Del Rosario (1993) and Ran (1993).

Moul produced a computer simulation for measuring cargo delay (Moul, 1992). The

model he developed did not investigate rescheduling airlift or reflowing cargo.

The research by Del Rosario and Rau was directed toward applying mathematical

programming techniques to the iterative procedure described in Chapter I (see Figure 2).

The research by Del Rosario was a mathematical programming approach to flowing

cargo where a multi-period, multi-commodity network was used to model the channel cargo

system (Del Rosario, 1993). The model was successful in flowing cargo within one of the

geographic areas of the channel system for a week; however, the method had several

limitations such as an "out-and-back" phenomenon and an inability to model the large size of

the channel system (Del Rosario, 1993:75-78). This research uses the same data set as Del

Rosario so that comparisons may be made between the efforts.

9

Rau used a mathematical programming approach to scheduling aircraft using a general

job-shop model (Rau, 1993). The methodology was partially successful for a reduced size

problem; however, it proved to be an inefficient use of linear programming techniques and

failed to consider reflow of the cargo (Borsi, 23 July 1993).

The limitations of these models are evaluated in the following discussion.

11.3 Lhnitadons of Prior Approaches

Applying mathematical programming to AMC's channel cargo system, Del Rosario and

Rau discovered that the number of decision variables and constraints became so large that the

computational capability of even the most state-of-the-art computer systems would be taxed.

The attempt by Del Rosario to solve the problem as a multi-period, multi-commodity minimal

cost flow formulation (M2 MCF) was unsuccessful primarily because of these computational

limitations. According to Del Rosario, if AMC's entire channel cargo system were modeled

as an M2 MCF, the estimated maximum number of variables in a one-month planning horizon

is nearly 3 million an, the estimated number of constraints is over 2 million (Del Rosario,

1993:38-39). This exceeds AMC's current computing capabilities, which can only solve linear

programming problems with at most 160,000 variables and 20,000 constraints (Del Rosario,

1993:39). Del Rosario found that "because of the problem size and other modeling limitations

discovered during [his] research, the presented M2MCF model of the channel cargo system is

currently not accurate enough to be useful as a scheduling tool" (Del Rosario, 1993:ix). Rau

encountered similar problems in his attempt to reduce en route delays (Rau, 1993:41). Both

efforts had to drastically partition the problem in order to reduce it to a workable size, and

subsequently had to sacrifice optimality in the process.

In light of these previous efforts, given current model and computational limitations,

optimal solutions for the channel cargo system may be nearly impossible to achieve using

mathematical programming. From a practical research standpoint, a good feasible solution

10

may be satisfactory and far more tractable. As such, a heuristic approach to solving the

problem has been adopted.

11.4 Heurist Appraches

Heuristics are procedures that cannot guarantee an optimal solution. In fact, in some

cases they cannot find even a feasible solution, although as Chapters IV and V show, for this

research the problem has been defined so that a feasible solution can always be found. As

defined by Borsi, "they are often based on insight into the fundamental nature of the problem

and are used when an optimal procedure is unavWilable or computationally intractable" (Borsi,

4 February 1994). As stated by Zanakis and Evans, they are "meant to provide good but not

necessarily optimal solutions to difficult problems, easily and quickly" (Zanakis and Evans,

1981:84).

The following sections address some heuristics that apply to both cargo flow and

scheduling.

11.4.1 Cargo Flow

The multi-commodity minimal cost flow problem (MMCF) was adopted in this

research because it is a general way to model the flow of cargo between different O-D pairs.

Chapter Em describes the elements of this network problem in detail. Borsi recommended

departing from the mathematical programming approach in the form of a successive, shortest

path (S-P) heuristic, which is discussed in Chapter IV (Borsi, 15 July 1993).

In their discussion of optimization on networks, Syslo, Deo, and Kowalik describe the

shortest path problem (finding the shortest path between two nodes in a network) as the most

fundamental and also one of the most commonly encountered problems in the study of

transportation and communication networks (Syslo et al., 1983:227). The Busacker-Gowen

Min-Cost Flow Algorithm (B-G) is one method of solving a min-cost flow problem through

repeated application of a shortest path heuristic.

11

Syslo, Deo, and Kowalik summarize an iteration of the B-G algorithm in two basic

steps: (1) finding a shortest path in the network, and (2) modifying the network to account for

the flow along this shortest path (Sysio et al., 1983:302). When a shortest path is found

between the source and sink node, flow is sent along that path until the path reaches saturation

or the total flow reaches the target value for the source. If no shortest path can be found, the

B-G algorithm terminates for the current source/sink combination.

If the current path is saturated, the network must be modfe to account for this flow.

This modified network has the same structure as the original, except that certain costs and

capacities will change. The capacities along the arcs of the shortest path will be decremented

according to the flow established. If any of these, arcs is saturated, the capacity along this arc

is set to zero and the respective cost is set to infinity. Additionally, all arcs with nonzero tHow

have "fictitious" arcs introduced in the reverse direction. These reverse arcs have capacity

equal to the current flow through the forward arc and cost equal to the negative of the cost of

the forward arc. These reverse arcs allow flow reduction in subsequent iterations of the B-G

algorithm.

For any flow level achieved, the B-G algorithm produces the minimum cost solution.

By specifying an infinite target flow, the B-G algorithm will solve a max-flow problem as well;

however, it is considered an inefficient method of solving this problem (Syslo et al.,

1983:306). The multi-commodity nature of the channel cargo system could be added to the B-

G algorithm through additional iterations with updated source and sink nodes. Some of these

considerations will be discussed in Chapter IV. There are a variety of S-P algorithms,

including algorithms by Bellman, Dijkstra, Dantzig, Whiting and Hillier, and Floyd (Bazaraa

et al., 1990:625). Chapter IV discusses the selection of the specific S-P algorithm in more

detail.

12

11.4.2 Schedule Improvement Approaches

"There are over 100 heuristics reported in the literature for scheduling. According to

Zanakis and others, of those, there are 19 that deal specifically with improvement (Zanakis et

al., 1989:93). Improvement heuristics typically begin with a feasible solution and successively

improve it by a sequence of local exchanges. The goal is to maintain a feasible solution

throughout the procedure (Zanakis et al., 1989:89).

The heuristic developed in this research is similar to the k-opt improvement heuristic

used to solve traveling salesman problems. K-opt is an improvement heuristic which

"...affects interchanges between the components of [the] schedule to improve costs* (Bodin,

1983:134). The heuristic developed in this research seeks to improve costs by interchanging

existing arcs in the flow paths with other, potentially new ones. Chapter V discusses the

precise methodology employed.

13

Ill. OveraU Mthodology

HLi.1 Genen

As discussed in Chapter 1, the goal of this research was to develop an iterative procedure

for scheduling airlift and flowing AMC's channel cargo. The approach consists of two major

components, a flow algorithm and a schedule improvement algorithm, which are discussed in

Chapters IV and V, respectively. This chapter discusses precisely how the components interact

with each other to achieve an improved cargo flow panern, which is defined as a set of feasible arc

flows in a directed network. The chapter also discusses this research's iterative improvement

approach, the network formulation, and methods employed to reduce problem size and complexity.

111.2 Integraidon

The goal of the iterative method developed in this thesis is to maximize the tonnage of

cargo delivered while minimizing the time commodities spend in the channel system. The method,

suggested in 1992 by Borsi and explored by Del Rosario and Rau (Del Rosario's research

addressed Step One while Rau's addressed Step Two), was described by Ran as

a two-step, iterative process. In Step One, given any schedule, a flow of cargo is
determined based on this schedule. The cargo is categorized by its quantity
(weight) and its type (origin and destination). Step One determines the quantity
and type of cargo that is loaded onto or taken off each aircraft as the cargo is
transported from one airbase to another on its assigned path. Step Two modifies
the flight departure times and revises the overall schedule based on this cargo flow.
Returning to Step One with the revised schedule, the cargo flow is modified based
on the new flight times (Rau, 1993:7-8).

Figure 3 demonstrates how the iterative improvement algorithm integrates the two steps. It

is discussed in more detail later. The flow of cargo is dependent upon the existing network, which

itself is created by a schedule. Any change to the schedule will necessarily alter the structure of

the network and offer the potential that an improved flow pattern can be found on the altered

network.

14

SCARGPREP develop~s

an initial schedule.

Flow the channel cargo ,m H

Se - through the network.thflwVide
Store the amount of 7 * ncAR°SM

cargo flowed and the cost.

i rwm Wredn •a*

Manipulate the schedule and
reflow the cargo over the

altered network. Store the
amount of cargo flowed and
the cost.

Figure 3. Iterative Nature of the Process

Step One, flowing the cargo, is addressed in Chapter IV, and Step Two, improving the

schedule, is discussed in detail in Chapter V. While Steps One and Two rely on each other, the

determination of whether the process has actually led to improvement combines output from both.

Recall that the process is designed to iteratively approach, or converge on, a good feasible

solution. The algorithm terminates when the process ceases to improve the flow pattern of the

cargo.

Each commodity that is flowed has its own individual cost, called weighted thme-in-system

(WTIS), measured in day-tons. WTIS is the product of a commodity's tonnage and its time-in-

system. The cumulative WTIS (CWTIS) of the entire flow pattern is the sum of each commodity's

WTIS and is the measure used to assess flow improvement. Note that this measure places greater

significance on larger shipments since, if a large shipment is delayed, its impact will be felt more

sharply than if a smaller shipment is delayed by the same amount.

A complete iteration through the iterative improvement algorithm consists of a pass

through both Step One and Step Two. Step One produces a flow pattern with associated CWTIS;

15

Step Two then attempts to alter the schedule in order to produce a flow pattern with a CWTIS

equal to or less than that produced by Step One. 7te CWTIS produced by Step Two is compared

to the CWTIS produced by Step One on the next iteration to determine if the algorithm should

proceed or terminate. As Figure 3 demonstrates, after Step One of the first iteration there is no

previous value of CWTIS to compare with to assess improvement. The algorithm proceeds

directly to Step Two. On subsequent iterations, however, the algorithm assesses improvement

before proceeding to Step Two.

As Figure 3 shows, when the algorithm determines that the flow pattern has not improved,

the solution is passed to CARGOSIM for validation.

111.2.1 Flow Pnatern Improvement

The assessment of iterative improvement is described below. The following cases discuss

flow pattern improvement:

Case 1: If the amount of cargo flowed in Step One is the same as that flowed in the

previous iteration, the flow pattern improves if CWTIS decreases.

Case 2: A flow pattern is also improved if, after a pass through Step One, more cargo was

flowed than on the previous iteration. In essence, the changes to the schedule made in Step Two

changed the network sufficiently to allow more cargo flow. Note that any pattern that flows more

cargo is considered superior, regardless of CWTIS.

111.2.2 Lack of Flow Pattern Improvement

The following cases demonstrate instances where the iterative improvement algorithm

would terminate due to a lack of improvement.

Case 1: If the amount of cargo flowed remained constant relative to the previous iteration,

but CWTIS did not decrease, the flow pattern has not improved. Since the algorithm continues to

iterate only when improvement occurs, it terminates after Step One. If CWTIS remained constant,

the flow pattern from Step One and the pattern from the previous pass through Step Two both

16

represent acceptable feasible solutions. To determine which is preferred, the analyst can examine

the time-in-system distribution and/or the transshipment distribution of the flow patterns, both of

which are provided as output.

Case 2: Ideally, after a schedule has been improved by Step Two, the next pass through

Step One should be able to flow at least as much cargo as on the previous iteration. It can do so

by using the flow pattern generated by Step Two. However, because the cargo flow algorithm is a

heuristic, a subsequent application of Step One may generate a flow pattern that delivers less

cargo. Thus, the flow pattern has not improved. The algorithm terminates and stores the most

recent pattern found by Step Two as the solution. The flow pattern found by the final pass through

Step Two will represent the best solution in this case because it flows a greater amount of cargo

than the final pass through Step One.

At the end of the iterative process described here, the AMC analyst possesses a flow

pattern and an actual flight schedule covering the planning horizon. The flow pattern lists each

piece of flowed cargo and the path it used, showing mission numbers, node numbers, bases, and

associated times. The flight schedule is in the form of a list of the nodes in the network and the

times associated with them. This list can easily be adapted for validation in CARGOSIM.

111.3 The Network

A specialized network was used to model the AMC channel cargo system. The network is

defined by the cargo requirement and the current schedule. The initial schedule was produced

using output, shown in Appendices D-G, from AMC's STORM and CARGPREP models.

Subsequent schedules were produced by the schedule improvement algorithm.

The nodes of the network represent three different entities: 1) a cargo generation node

(source node), 2) a mission airbase node where an individual sortie makes a scheduled stop, and 3)

a commodity-dependent destination node (sink node). All source and mission airbase nodes have

times associated with them. For a source node, the time represents the availability time for a

17

commodity. For example, a time of 3.5 for a source node means that a commodity is delivered to

its origin airbase at the 3.5 day point within the planning horizon. For a mission airbase node, the

associated time represents the time that the given aircraft is at the specified airbase. Furthermore,

every node's associated base is identified by its ICAO (International Civilian Aviation

Organization), a distinct four-character designator. The source node has two associated ICAOs,

one for cargo origin and one for cargo destination. Each distinct cargo destination has a sink node

with matching ICAO.

As modeled, the channel system network is a directed graph with the arcs only directed

forward in time. That is, an arc originating at a node can only terminate at a node with an equal

or later associated time. This models the time dependency of the problem. The cost of each arc

represents the time spent performing its associated acdvihy. The arcs can represent five different

activities: 1) a delay encountered when cargo is at its origin airbase awaiting initial transportation,

2) the time it takes a given aircraft to fly a leg of its route between two airbases (nodes), 3) ground

time for an aircraft along its route (which implies either an aircraft-specific standard ground time

or a remain-over-night (RON) time), 4) transshipment, which represents time spent at an airbase

while offloading cargo from one aircraft and reloading it onto another, and 5) arrival at the final

destination (these arcs are zero-cost sink connection arcs which connect a mission airbase to an

applicable sink node --;f the same ICAO).

Figures 4 thr -;hn 8 illustrate an example network for the channel cargo system. In the

figures, each horizontal sequence of nodes represents a single aircraft flying a single mission.

Figure 4 illustrates the three node types used in the network, as well as the mission leg arcs and

mission ground time arcs. Figure 5 includes the time and ICAO information associated with the

node set (for clarity, the ICAOs have been shortened to a one-letter designation). Figure 6 depicts

the arcs that connect source node number one to the mission airbases of proper ICAO and time.

18

D D DFI - Cargo generation nodes

O"CO(>o Mission airbase nodes with arcs

Sink Nodes (> 0ii 0
FIgure 4. Tlhee Types of Nodes in the Network

O- D..•bntki Adame ICAO[1]L~5 [i2 -oodrutdn AlrbomIAO
4- Cargo Anriml Tim.

Cargo Generation Nodes

- Mission eirbase nodes with arcs

Sink Nodes. (. t <3)

FIgure S. Times and ICAOs Associated with the Network

19

C 4- O~i ibreIA

L El - Des*talen Aklrbe ICAO
4- Careg Arrivel Tlme

Cargo Generation Nodes

. .Mission airbase nodes with arcs

1. . .2 . 3. .-3. -3. ,3.

Sink Nod** 0~ GI: 0F

Figure 6. Arcs Connecting Sourcs Node with Base 'A'

Or0i Aldbý ICAO

'-Ca€SIe ArrivalTn

Cargo Generation Nodes

SMission airbese nodes with ac

1. 1 2. - . -3 3. .3. t-3.

1.,1 . ot-. ®

Figure 7. Transshipment Arcs for Airbase 'B'

20

- igin Nrbos. ICAOF~i Ti ~Doos*allon Aliboo. MAO
~ [~j~ 4Carmgo Arriva Thn.

Cargo Generation Nodes

Mission sirbaes nodes with arcs

Figure 8. Zero-cost Arcs Connecting Airbase 'C' with its Sink Node

Figure 7 depicts the arcs connecting airbases of the same ICAO (only "B in the figure) to allow

for cargo transshipments. Figure 8 illustrates the zero-cost arcs connecting mission airbases to a

sink of the same ICAO. A sink node of a given ICAO is generated only if a cargo node exists with

that destination ICAO.

111.4 Reducing the Prblem

Previous efforts were unsuccessful in modeling the entire channel cargo system due to its

large size and complexity. Del Rosario lists some typical data for the channel system for an

average month based on his discussions with AMC personnel (Del Rosario, 1993:38):

Number of commodities: 437

Number of sorties: 528

Average number of legs per mission: 3

Assuming that each commodity has seven nodes to represent a week's worth of cargo

arriving on consecutive days, 3059 source nodes would be required in a network representing a

21

week's activities. A sortie with three legs would have six mission airbase nodes, so the total

number of mission airbase nodes is 3168. Assuming some duplication in commodity destination,

the total number of sink nodes is assumed to be 200. Therefore, the total number of nodes

required to model a week's activities is approximately

Source nodes: 3059

Mission airbase nodes: 3168

Sink nodes: 200

Total: 6427 nodes in the current network formulation.

This is a sizable network, so storage limitations must be considered. Storage of the arc set

as an NxN weight matrix would require 64272=41,306,329 bytes. Additionally, the algorithms

used in this thesis effort require storage of costs, capacities, and flows for each arc, as well as

temporary values for these arc parameters. This would require six of these NxN matrices, or

approximately 250 million bytes. This is an inordinate amount of storage capability (in Random

Access Memory) and would tax AMC's computational capabilities.

In response to this huge memory requirement, a modified linked adjacency list was

developed. A linked adjacency list groups arcs according to their node of origin, which is known

as aforward star (Syslo et al., 1983:225). Instead of storing a large number of irrelevant (i.e.

zero or infinity) values in an NxN matrix, the adjacency list only contains data for arcs that exist in

the network formulation. The benefits of this data representation are more evident in a sparse

network and diminish as the number of arcs increases.

In addition to this data representation, the total size of the arc list was reduced. If an arc is

established between any two mission airbases of the same ICAO, directed according to time

precedence, there is a potential for (m)(m-l)/2 arcs for each ICAO airbase within the mission

airbase subgraph (where m is the number of same-ICAO airbases for any ICAO present). This can

result in a very large arc set. For the Europe/Southwest Asia (E/SWA) sub-problem addressed in

22

this thesis, our original implementation produced approximately 180,000 arcs for a 2,293 node

network.

This proliferation of arcs was prevented by establishing a spanning path for mission

airbase nodes linked in a time sequence. Figure 7 displays such a path for the "B" airbase nodes.

If two nodes with the same ICAO have the same time, arcs are added to the path which allow

cycles between the nodes representing the airbases. By implementing the spanning path, the arc set

is reduced to length (m-1), assuming no cycles within the path. This significantly reduced the

number of arcs in the E/SWA problem to approximately 20,000.

I1.5 User-preferences

Within the program are several problem-dependent parameters which the user may change

to enhance program performance and realism. Specifically, these parameters are 1) the number of

transshipments allowed on a particular path, 2) the policy used when transshipping, e.g. restricting

transshipments to certain airbases, 3) the criteria used to sort the cargo, 4) the order in which the

missions are examined by the schedule improvement algorithm, 5) the maximum number of passes

per iteration through the schedule improvement algorithm, 6) the maximum number of alternate

paths examined by the shortest path algorithm, and 7) the maximum number of iterations of the

program. Parameters 1 through 6 are discussed in Chapters IV and V, as appropriate. Parameter

7 is used as a ceiling on running time. The possible values for these parameters are shown in

Appendix J.

The algorithm developed in this thesis is meant to be a tool for better planning and is

designed to be as dynamic and flexible as possible. It provides the analyst the opportunity to tailor

the process to the constraints of the problem.

23

1V. How Mkodologo

1V.I Gexeral

This chapter discusses Step One of the iterative improvement algorithm outlined in

Chapter III. Given a mission schedule and cargo requirements, the network is developed.

Then the problem is to minimize the CWTIS incurred while flowing cargo from source nodes

to sink nodes. This is a multi-commodity minimal cost flow (MMCF) problem, where each

commodity represents a source-sink combination.

There are a variety of approaches to solving the MMCF, several of which were

outlined in Chapter I1. These methods vary considerably in terms of tractability and speed.

The concepts of the Busacker-Gowen Min-Cost Flow Algorithm (B-G) %ere modified Into a

cargoflow heuristic for this research. The modifications were motivated by the objectives of

this research.

IV.2 Motivation for the Flow Heuristic Approach

The cargo flow heuristic had to exhibit two characteristics in this research: 1) it had to

be computationally efficient, and 2) it had to allow effective control of the flow paths.

Modifications to the B-G algorithm were undertaken with these two characteristics in mind.

As noted in Chapter II, the B-G algorithm introduces "fictitious" reverse arcs into the

network in response to flow. These reverse arcs allow flow redirection in subsequent

iterations, allowing the algorithm to develop a min-cost solution. Within our channel system

network, these reverse arcs were detrimental to an efficient implementation of the flow

heuristic.

Chapter II outlined the linked adjacency list used to store all network arc data. If

reverse arcs were introduced for each flow path, the list would need to be constantly updated

in order to insert these arcs. In addition to reducing the computational speed of the flow

24

heuristic, these arc additions would increase memory requirements and reduce the maximum

size problem the iterative improvement algorithm could process.

Path control would also be degraded with the addition of the reverse arcs. The quality

of a flow path involved several factors besides time-in-system, including number of

transshipments and flow capacity. Reverse arcs could reverse this flow on subsequent

iterations, favoring paths that are not desirable when considering all factors.

Unfortunately, the mechanism that allows the B-G algorithm to derive the min-cost

solution, addition of reverse arcs, is detrimental to both cargo flow characteristics and was not

implemented. With this modification justified, the cargo flow heuristic can be outlined.

IV.3 Description of the Cargo Flow Heurisa

The cargo flow heuristic followed the same two basic steps of the B-G algorithm: (1)

finding a shortest path in the network, and (2) modifing the network to account for the flow

along this shortest path. Figure 9 outlines the steps of the cargo flow heuristic. The heuristic

begins by selecting the current commodity, its quantity, and the respective source and sink

nodes. Once this is performed, Step One is implemented.

Step One consists of a call to the shortest path algorithm. If a shortest path is found

between the source node and sink node, the algorithm proceeds to Step Two. If no path can be

found, the heuristic repeats Step One for the next commodity. If no more commodities remain,

the cargo flow heuristic terminates.

Step Two modifies the network to account for flow along the shortest path. This

modified network has the same structure as the original, except that certain costs and capacities

will change. The flow quantity for the path is the minimum of the capacities of the constituent

arcs and the commodity quantity remaining. The capacities along all the arcs are

25

lect next commodity/quantity None Left Te t
(Source/Sink) o4.1

T Call Shortest Pate frorith Algagrhm a STEP ONE

iNo

aoModify Network STEP TWO

Yes Flw=Quniy Noo

Figure 9. Steps of the Cargo Flow Heuristic

decremented according to the flow established. If any Of these arcs is saturated, the capacity

along this arc is set to zero and the respective cost is set to infinity.

Ile cargo flow heuristic deviates from the B-G algorithm at this point. Ile B-G

algorithm would also introduce the "fictitious" reverse arcs when modifying the network. As

discussed, these arcs hinder the performance of the flow heuristic and are not introduced.

Once the network has been modified, the heuristic compares the total flow for the

current commodity (the sum of all individual path flows) to the commodity quantity. If the

flow equals the commodity quantity, the algorithm selects the next commodity. If the flow is

less than the commodity quantity, Step One is repeated.

26

The processing sequence of the commodities is non-trivial and can affect the overall

system CWTIS. Obviously, as the network arcs become infeasible due to flow of subsequent

commodities, options for a shortest path may be degraded. Some considerations in commodity

sequencing and path selection are addressed in Chapter VI.

IV.4 Shortest Path Algorit/n

The selection of a specific shortest path (S-P) algorithm is important in terms of

computational efficiency. As the S-P algorithm is the building block for the cargo flow

heuristic and is called many times, an efficient algorithm was desired. Dijkstra's S-P

algorithm was selected due to its efficiency and ease of coding.

IV.5 Alternate Path Selecton

Often, the initial path found by Dijkstra's algorithm is not the most preferable in terms

of transshipments and flow capacity (early analysis results on the E/SWA problem indicated

this). Given a shortest path connecting a source node to its respective sink node, there is a

definite possibility that an alternate shortest path could exist within the network.

The transshipment issue complicates the shortest path computations considerably.

Transshipping cargo entails downloading it from an aircraft and uploading it to another

aircraft. Obviously, this takes time and resources and should be avoided unless absolutely

necessary. AMC lists the current cost of transshipping as approximately $176 per ton

(Robinson, 20 September 1993). Additionally, discussions with AMC analysts indicate that

both the STORM and CARGOSIM tools assume a maximum of one transshipment per

commodity (Robinson, 20 September 1993). This one transshipment constraint, as well as

possible restrictions on airbases that allow transshipments, predicates emphasis on proper path

selection.

The nature of Dijkstra's S-P algorithm allows construction of alternate paths once the

initial path is found. Within the algorithm, nodes are given permanent labels when the

27

shortest distance from the input source node to the specified node is found. This labeling

process is accomplished in a non-decreasing fashion, as the nodes that have the shortest path

lengths relative to the source node will be found and labeled before other nodes in the network.

This fact was exploited in attempting to construct the alternate paths. Only the nodes

that had been permanently labeled were candidates for an alternate path of the same length

(time-in-system). All other unlabeled nodes were not close enough to the source to constitute a

path of the same length.

Once the initial shortest path was found, the predecessor array was instrumental in

determining alternate routing through the network. The predecessor array is an array which

allows one to trace a path from the sink node back to the source node. This node set was

scanned, starting at the node prior to the sink. At each node of the scan, the arc list was

reviewed to see if any arc, originating at a different permanently labeled node, ended at the

current node. If such an arc existed, an alternate path was found.

Having found an alternate path, its number of transshipments, flow capacity, and actual

time-in-air were determined. These characteristics were compared to the initial path

characteristics and the superior path was stored. With the other characteristics equal, a path is

superior if it has fewer transshipments. If two paths have the same number of transshipments,

the path with higher flow capacity is selected. This process continues for each alternate path

found.

Figures 10 and 11 demonstrate the nature of the alternate path logic. Figure 10

displays an initial path found by the S-P algorithm. This path is not desirable, as it has one

transshipment and also places the cargo on two out-and-backs (returning to the same airbase

before final delivery) prior to final delivery at base E. Figure 11 displays the path that would

be found and selected using the alternate path routine incorporated into Dijkstra's S-P

algorithm. This path has no transshipments and no out-and-backs. As the routine traced back

28

t-0.0
S• E Cargo Generation Nodes

Mission airbase nodes with arcs

Sink Nodes <) 2> E

Figure 10. An Initial Path Found

i • E Cargo Generation Nodes

Sink Nodes (0' <D E

Figure 11. A Superior Alternate Path

29

from the node prior to the sink (E at t=3.3) in the initial path, it would proceed to the C node

at t=3.1. The review of the arc list at this point would indicate that the source node, which

has been permanently labeled, has an arc going into that C node. This alternate path is found

and analyzed as superior to the initial path found. It is stored and the search continues.

IV.6 Path Compmeqssio

The nature of the network, as well as the implementation of the alternate path

algorithm, produced some paths with a large number of nodes. As discussed in Chapter III, a

spanning path was designed to allow transshipments while minimizing the number of arcs

required in the network. Unfortunately, these spanning paths could result in some flow paths

of inordinate lengths, with meaningless intermediate nodes.

A compression algorithm was developed to shorten all flow paths to only the essential

nodes (reference the main program listing in Appendix B). This algorithm scanned the

predecessor array returned from the shortest path algorithm, looking for nodes with the same

ICAO separated by intermediate nodes. If this condition occurred, the intermediate nodes were

eliminated from the path. The arc list was then scanned to determine if an arc existed to flow

between these two nodes. If an arc was present, its flow quantity was modified. If an arc was

not present, it was created and added to the arc list with an appropriate flow value.

IV.7 Analysis of the Out-and-Back Phenomenon

An out-and-back (O&B) occurs when cargo travels on mission legs that form a cycle,

returning the cargo to the same airbase it has visited previously, prior to final delivery at the

destination airbase (see Figure 12). This is an undesirable condition because it reduces aircraft

flow capacity along those legs and would increase fuel costs. It is preferable, in most cases, to

download the cargo and upload it at a later time, circumventing the out-and-back (Robinson, 1

February 1994). Unfortunately, this will often increase the number of transshipments that the

cargo must undertake.

30

As mentioned above, most of the time O&Bs should be avoided; however, there are

competing objectives: the cost of preventing the out-and-back by transshipping (downloading

and uploading later to the same mission) versus the cost of leaving the cargo on the aircraft and

incurring the reduced flow capacities/increased fuel costs along those mission legs. In certain

cases, where the O&B is short and the cargo is either difficult or impossible to download at the

airbase (i.e. position within the aircraft and airbase equipment restrictions), an O&B might be

preferable. This could be modeled in this methodology and given a user parameter to specify

which condition is preferable. In terms of the objectiw of this research, maximizing flow

while minimizing CWTIS, the option of transshipping the cargo to prewnt the out-and-back is

always considered preferable because it increases future flow capacity along the intermediate

mission legs without increasing the CWTIS. The compression algorithm, originally designed

to eliminate the transshipment spanning path in the paths returned from Dijkstra, was easily

modified to eliminate the out-and-backs as well.

OUT-AND-BACK

Figure 12. Prevention of the Out-and-Back Phenomenon

31

V. Sdcdul haprwow at

V.I General

This chapter addresses Step Two of the iterative improvement algorithm (HA)

discussed in Chapter M. Step Two, hereafter referred to as schedule improvement, involves

shifting mission start times in the hope of reducing the CWTIS of the flow pattern developed

by Step One, as discussed in Chapter IV. The method developed here is similar to Rau's

method only in its intent. Rau modeled AMC's channel cargo system as a job-shop scheduling

problem (where a machine corresponded to an aircraft flying a single flight leg and a job was a

requirement to transport cargo from one airbase to another) and employed the concept of semi-

active time tabling to develop a new schedule (Rau, 1993:21). While his method was certainly

an adequate approach to schedule improvement, it did have a limitation: its scope was too

narrow.

This limitation was a direct result of his use of semi-active time tabling, which

"produces a schedule in which no operation could be started earlier without altering the

processing sequence* (Rau, 1993:18). In other words, Rau only perturbed the schedule to the

point that all existing arcs in the network remained feasible and all cargo flowed along the

same path it used prior to schedule alteration. The approach developed here goes further by

reflowing cargo along a different path if doing so improves the flow pattern.

Given a feasible solution, the general approach for schedule improvement involves

manipulating the schedule to a degree that preserves the feasibility of the solution and reduces

its overall cost. For this research, a feasible solution is one in which the amount of cargo

flowed between each O-D pair is not reduced.

Recall that the schedule consists of a sequence of missions with scheduled start times.

The approach adopted in this research was to reschedule the missions by adjusting their start

times in an effort to deliver cargo to the customer in a more timely fashion. Obviously, it is

32

possible to reschedule a mission to an earlier or a later time; the method developed here only

addresses shifting a mission to an earlier time. Shifting to a later time is left to future

research.

Determining the amount by which a mission is rescheduled is not a trivial matter. The

existence of transshipment arcs within the network complicates this issue. Shifting the mission

start times may have a considerable impact on the transshipment arcs, i.e. many feasible arcs

may become infeasible. An arc is feasible when its direction is forward in time and becomes

infeasible when its direction changes to backward in time. That is, for an infeasible arc the

time associated with its head node is earlier than the time associated with its tail node. As

mentioned in Chapter III, arcs represent various physical activities, so they cannot go

backward in time. The flow of cargo may be affected as the transshipment arcs are affected.

The heuristic contains a series of checks to maintain the feasibility of the solution at all

times. This involves determining when improvement occurs and when it does not.

Specifically, these checks must ensure that no previously-flowed cargo goes undelivered.

V.2 The Schedule Improvement Algoritn

At Step Two of each iteration of the HA, the schedule improvement algorithm is

applied sequentially to every utilized requirements mission in the existing schedule and then

generates a new schedule. The new schedule in turn generates a new network which will be

used as an input to the flow algorithm on the next iteration of the HA. A discussion of why

only requirements missions are considered appears in Section V.3. The general approach of

the schedule improvement algorithm is to shift each mission in the schedule by an amount

which leads to an improved flow pattern. The steps of the algorithm are shown in Figzare 13

with a brief description of what each step does. In Step 1 the algorithm determines the amount

of the time shift, which is implemented in Step 2. Step 3 determines whether the shift

33

For each mission:

Step 1: Determination of the Time Shift

For the given mission determine the amount
its start time may be shifted earlier
in the schedule.

Step 2: Implementation of the Time Shift

Adjust the network to reflect the time
shift determined in Step 1.

Step 3: Measuring the Impact of the Time
Shift

Determine whether the time shift reduces
flow or increases CWTIS. If it does, go
to Step 4. Otherwise, go to Step 1 with
the next mission.

Step 4: Reversal of the Time Shift

Restore the network to its pre-shift state.
Determine a time shift which will not
degrade the flow pattern. Implement this
time shift.

Figure 13. Schedule Improvement Algorithm

improves or degrades the flow pattern, while Step 4 reverses the time shift if the flow pattern

was degraded. A detailed discussion of each step follows.

34

Step 1: Detenxiaatiea of the Thme Shift. If the start time of a mission is to be

changed, the magnitude of the change must be determined. Recall the two primary types of

arcs within the network: mission arcs, which connect nodes on the same mission to each

other, and transshipment arcs, which connect same-ICAO nodes on different missions. Arcs

originating at cargo generation nodes are affected by shifts in the mission start times in the

same way that transshipment arcs are affected. So, for the sake of simplicity, the definition of

transshipment arcs is extended to include both types of arcs. Since a mission arc never

becomes infeasible by implementing a time shift, attention is focused only on the transshipment

arcs. Attention is further limited to only those transshipment arcs that haw positive flow.

These are derived from the set of paths found by the flow algorithm.

While a change is sought which will reduce the CWTIS of the flow pattern, the

network should not be over-perturbed. A greedy approach might shift the mission by the

maximum amount possible, i.e. shift its start time to time 0. While this may be successful in

some instances, in most realistic cases the system would be perturbed too drastically, either

causing so many transshipment arcs to become infeasible that some cargo must go undelivered

or forcing a flow pattern with higher CWTIS to be used. Instead, the method developed here

uses a more conservative approach, which is discussed in the following paragraphs.

If a transshipment arc terminates at a node along a mission, that arc is said to terminate

on that mission. Likewise, a transshipment arc which originates at a node on a mission is said

to originate on that mission. Each mission has a set of positive-flow transshipment arcs

terminating on it which are sensitive to any changes in the mission start times. As the mission

is shifted to an earlier time, the costs of these transshipment arcs become smaller until they

become infeasible. If a time shift were chosen so that no transshipment arcs become infeasible,

cargo would never have to be reflowed on different paths. Since this approach explores the

possibility of reflow, time shifts are allowed which cause arc infeasibilities. But in order to

35

not perturb the network excessively, only one arc Is alknMed to becom* infeasible per time

shift.

For each mission the terminating transshipment arc which is the first arc to become

infeasible with a time shift is found. It is called the most critical arc. As multiple arcs may

have the same costs, there may exist more than one most critical arc. In order for this arc to

become infeasible, the time shift must be greater than its cost. Of the remaining transshipment

arcs the next to become infeasible is determined. It is called the next most critical arc. The

time shift cannot exceed the cost of this arc. If it does, more than one transshipment arc will

become infeasible. If only one transshipment arc connects to the mission, the algorithm

artificially defines a next most critical arc with a cost equal to the cost of the most critical arc

plus a set increment.

Since the mission cannot be shifted by an amount which causes the mission start time

to become a negative number, the mission start time forms an upper bound for the time shift.

The time shift is defined as the minimum of (the mission start time, the cost of the next most

critical arc). Figure 14 demonstrates this process. In the figure, the vertical arcs represent

three transshipment arcs terminating at a node of the mission, with costs 0. 1, 0.2, and 0.3

days. The transshipment arc with cost 0.1 terminating on node B will be the first to become

infeasible if the mission start time at node A is shifted sufficiently. It is the most critical arc.

The transshipment arc terminating at node C with a cost of 0.2 will be the next to become

infeasible. It is the next most critical arc. Since the mission start time at node A is day 1.5,

the time shift equals the minimum of (1.5, 0.2), or 0.2 days.

If the time shift is less than the cost of the most critical arc, then shifting the mission

start time will not cause any transshipment arcs to become infeasible. Otherwise, the time shift

represents the maximum amount of time the mission start time can be shifted while only causing

36

0.1 0.2

0.3

Figure 14. Determination of the Time Shift

one set of arcs, the most critical arcs, to become infeasible. After the time shift is determined,

the algorithm proceeds to Step 2.

Step 2: Inple. eaatioi of the Thme Shift. Any change to a mission start time

changes the network. The time associated with every node on that mission changes, as do the

costs of every transshipment arc originating or terminating on it. As the schedule changes, the

network must be updated to reflect the change. Before implementing the time shift, it is not

known that it improves the flow pattern. It may become impossible to reflow some of the

cargo, or the CWTIS may increase. Because of this, the shift of the mission start time will not

become permanent until conditions, discussed below in Step 3, are satisfied. Instead,

temporary storage arrays are maintained to store the current state of the network in case the

pre-shift state must be restored later. This includes the paths used in the flow pattern, the flow

and capacity of each arc in the network, and the times associated with each node.

The implementation of the mission's time shift is performed by subtracting the amount

of the time shift from the times associated with each node along the mission. If the time shift

is greater than zero, the state of the network has changed, requiring that the costs of the

37

0.1 0.2

0.3

before the time shift

after the time shift
iiinfeasible 0.0

0.1

Figure 15. The Network Before and After a Time Shift of 0.2 Days

transshipment arcs be updated to reflect the time shift. However, not all of the transshipment

arc costs have changed. Only those transshipment arcs which terminate on the mission or

originate on the mission need to be updated. Figure 15 shows the state of a hypothetical

network before and after a time shift of 0.2 days. The most critical arc, shown as a dotted

line, has become infeasible and the costs associated with all other transshipment arcs have

changed.

If the time shift did not cause any arc infeasibilities, the algorithm makes the changes

to the network permanent and starts over with a new mission at Step 1. Otherwise, it proceeds

to Step 3, discussed below.

38

Find a path containing
the most critical arc.

an Yes Generate a list
alternate path r e ondition 1

Relate nate path:Go to Step 4. remain on
•he list?,,

SYes

with the new one

next path reduceRlondni ion 2

iie nough capacitytroh Condition 3
remain?

,Yes

Replace the old]ah

with the now one

Figure 16. Reflow Conditions

Step 3: Measuring the Impact of the 7Tie Shift. A change to the network has been

implemented that could either improve or degrade the flow pattern of the channel cargo. Ile

impact of the change must now be determined.

39

Since this step has been reached, the time shift has forced a transshipment arc to

become infeasible. Every commodity which flowed over that arc must be reflowed on a

different path which does not contain the most critical arc.

In order for a commodity to be reflowed, three conditions must be satisfied: (1) an

alternate path must exist over which the cargo can be flowed, (2) using this alternate path

maintains or reduces the CWTIS of the flow pattern, and (3) there must exist enough remaining

capacity on the alternate path to handle the reflowed commodity. If any one of these three

conditions is not satisfied, then the algorithm will not reflow the commodity and the time shift

is deemed inappropriate. The flow chart in Figure 16 demonstrates these checks. Each

condition is discussed in detail in the following paragraphs.

Checking Condition 1: The check of the impact of the shift begins by finding

all the paths which contain the most critical arc. The cargo flowed on these paths must be

reflowed on alternate paths since their original paths now contain an infeasible arc. Given a

piece of cargo that flowed along a single path, it is possible to split the cargo into several

pieces, in which case a set of alternate paths must be found. However, the schedule

improwment algorithm does not permit such division. Instead, for each piece of cargo that

must be reflowed, a single alternate path must be found to replace the original. It is left to

future research to explore dividing the cargo and flowing it over several alternate paths.

If no alternate path exists to reflow any piece of cargo, implementing the time shift forces that

cargo to go undelivered. Since Condition 1 has been violated, the algorithm proceeds to Step

4. If an alternate path does exist, Dijkstra's S-P algorithm returns a list of several candidate

alternate paths to choose from. Considering each of them in the order Dijkstra's S-P provides,

the algorithm proceeds to a check of Condition 2.

Checking Condition 2: Considering one of the candidate alternate paths

produced during the check on Condition 1, it must be determined whether reflowing along the

candidate path maintains or reduces CWTIS. CWTIS is likely to change. All cargo flowed

40

along paths that reached their sink nodes directly from the shifted mission now reach the

customer sooner, so their WTISs are reduced. The cargo which flowed over the alternate path,

however, may have a higher WTIS than prior to the shift. The CWTIS of the pre-shift

network has been stored and is compared to the CWTIS of the post-shift network. If the post-

shift CWTIS is less than or equal to the pre-shift CWTIS, it is concluded that using the

alternate path does not degrade the flow pattern and the algorithm proceeds to the check on

Condition 3. If the CWTIS increases, the algorithm returns to Dijkstra's list of candidate paths

imd continues to look for one which satisfies Condition 2. If none can be found, the algorithm

leaves Step 3 and proceeds to Step 4.

Checkdng Condition 3: By satisfying Conditions I and 2, an alternate path has

been found whose usage maintains or reduces CWTIS. This alternate path consists of arcs

which may have been used elsewhere. In order to re-route the cargo over this path, enough

capacity must exist on each of the arcs along it to handle the entire amount of the commodity

being re-routed. If a single arc cannot handle the flow, the algorithm retvns to Dijkstra's list

of candidate paths and continues to look for one which satisfies Conditions 2 and 3. If none

can be found, the algorithm leaves Step 3 and proceeds to Step 4.

If all conditions are satisfied, the original path over which the piece of cargo flowed is

temporarily replaced by the alternate path. The substitution is temporary pending the check of

Conditions 1, 2, and 3 for all other pieces of cargo which must be reflowed. If any piece of

cargo cannot be reflowed along a different path, the time shift degrades the network flow

pattern and the algorithm proceeds to Step 4. However, if all the affected cargo can be

reflowed, the time shift and changes to the path set become permanent and the algorithm starts

over with a new mission at Step 1.

Step 4: Reversal of dte Tine Shift. If a time shift degrades the flow pattern, failing

one of the above three conditions, the network must be restored to the pre-shift state stored in

temporary arrays. The mission start time may still be shifted by an amount that will not cause

41

a transshipment arc to become infeasible. Such a time shift will equal the minimum of {the

mission start time, the cost of the most critical arc). Since implementing this time shift causes

no transshipment arcs to become infeasible, there is no need to check to see if any cargo needs

to be reflowed. The algorithm then continues with the next mission at Step 1.

A single pass through the schedule improvement algorithm represents applying Steps 1

through 4 to the mission set once. After the user-specified number of passes (discussed below

in Section V.4.2), the algorithm generates the new schedule to be used in the next iteration of

the iterative improvement algorithm, along with distributions for the time-in-system for each

piece of flowed cargo and for the number of transshipments along each path used in the flow.

V.3 Requirements vs. Frequency Missions

Recall that there are two types of AMC channel missions. These are the requirements

missions and frequency-of-visit missions. As mentioned in Section V.2, the schedule

improvement algorithm only considers requirements missions when manipulating the schedule.

The remaind& of this section discusses this restriction.

Frequency-of-visit missions, or simply frequency missions, are scheduled to occur at

specific intervals within a planning horizon rather than when a cargo requirement is generated.

If frequency missions were considered by the schedule improvement algorithm, their purpose

may become lost in the process. For example, suppose an embassy requires four visits per

month and these four missions are initially scheduled every seven days. If these missions were

processed by the schedule improvement algorithm, all four missions could possibly be shifted

to the first week of the month or even the first day. This would clearly be in conflict with the

purpose of the frequency missions. To prevent this from happening, before the schedule

improvement algorithm shifts a mission's start time, it first confirms that the mission is indeed

a requirements mission. Frequency missions are left unchanged.

42

V.4 User-speqdfed Pammeters

The final solution is sensitive to certain parameters that are in the user's control.

Specifically, the user can choose the order in which the missions are shifted and the number of

passes through the schedule lViprovement algorithm.

V.4.1 Mission Order

The schedule improvement algorithm is a series of steps that are sequentially applied to

the mission set. The order of the missions exhibits some influence on the final solution, so it

is imperative to order them effectively. There are four orders from which the user can choose:

1) default, which is the order provided by STORM and CARGPREP, 2) reverse of the default,

3) descending mission utilization, and 4) ascending mission utilization. Mission utilization is a

weighted measure of how much of a mission's capacity was used. Chapter VI discusses the

role of this parameter with respect to the E/SWA sub-problem used in this research.

V.4.2 Passes Per Iteration of the Schedule Improwment Algorithm

Steps 1 through 4 discussed in Section V.2 represent a single pass through the mission

set. At the end of this pass, the solution is guaranteed to result in an equal or reduced CWTIS

for the flow pattern. However, a single pass does not make use of the information that is

constantly developing as mission start times are changed. Changes that are made to missions

later in the sequence may potentially create the possibility of additional changes to earlier

missions. Making multiple passes through the mission set allows more information to be used,

potentially leading to more improvement in the schedule. However, multiple passes obviously

require more time to accomplish, although each subsequent pass may not necessarily require

the same amount of time as the previous pass. The user must decide the trade-off between the

time required to make multiple passes and the additional improvement achieved by them. The

influence of this parameter is discussed in Chapter VI.

43

W. RAmid

V7.1 Gewul

"This chapter presents key results which demonstrate the viability of the iterative

improvement algorithm as discussed in previous chapters. The algorithm was implemented in

FORTRAN and the code for this program is contained in Appendix B. Input files for this

program are contained in Appendices H-K along with a discussion of their use.

W.2 Testag Staegy

"ITis section discusses the testing strategy used in this research, addressing the

objectives of the testing as well as the design of the testing scheme.

VI.2.1 Objectives

The primary objective of the testing was to demonstrate that the iterative improvement

algorithm converges on a good flow pattern for AMC's channel cargo system.

An additional objective was to provide justification for the reflow feature of the

schedule improvement algorithm. Recall that one of the essential differences between this

algorithm and the mathematical programming approach by Rau is the ability to reflow cargo

over different paths if doing so improves the flow pattern. Testing sought to demonstrate that

the reflow capability provides additional improvement. Finally, parametric analysis was

conducted on the user-defined parameters, such as the cargo flow priority, the order of the

missions, and the number of passes per iteration of the schedule improvement algorithm,

discussed in previous chapters. Testing shows the sensitivity of the final solution to

adjustments of these parameters.

44

VI.2.2 De~ga of the TesWWa

In order to conduct parametric analysis, several sets of runs were performed, varying

the individual parameters as necessary. The primary parameters of interest were 1) the cargo

flow priority (the order in which commodities were flowed), 2) the order in which the missions

are examined in the schedule improvement algorithm, and 3) the number of passes per iteration

of the schedule improvement algorithm. The runs within each set have identical parameter

settings except for the parameter of interest.

While the reflow capability of the schedule improvement algorithm is not a user-

defined parameter, several pairs of runs of the program were performed to gauge its impact.

The first run in the pair allowed for cargo reflow; the second, using the same parameters as the

first, was run with the reflow mechanism disabled. Later sections graphically show the results.

To analyze these parameters, over 30 runs of the computer program were made. The

runs and their specific parameters are shown in Appendix 0.

The data used for testing was the same data set used in DeJ Rosario's research: the

E/SWA sub-problem, representing 20 distinct commodities (229.99 tons total) arriving at the

origin airbases over a one-week period. The initial schedule for this sub-problem, shown in

Appendix 1, was generated using output from AMC's STORM and CARGPREP models. It

consists of 213 missions, requiring over 2,100 nodes in the network.

VI.3 Convergence of the iterative Improvement Algorithm

The cargo flow and schedule improvement heuristics performed as expected in terms

of an iterative procedure that reduced the CWTIS. The procedure continued to iterate until

either the CWTIS could not be decreased or the overall quantity of cargo flow decreased.

Using Unix FORTRAN on a Sun workstation, overall run times ranged from 15 minutes to

approximately 2 hours.

45

The iterative improvement algorithm, in most cases, converged to a final solution with

a CWTIS of about 50% of the initial solution and all of the cargo flowed. Figure 17

demonstrates the reduction of CWTIS during iterations for test run number 8, which yielded

the lowest final CWTIS for total cargo flow (229.99 tons). On each successive iteration, the

improvement in CWTIS for the flow and schedule improvement algorithms tends to decrease,

indicating that as the process iterates, CWTIS becomes less sensitive to modifications of the

schedule. The final solution, with significant reduction in CWTIS, demonstrates a noticeable

shift in the distribution of tonnage versus TIS as seen in Figure 18. In all test runs (with

reflow capability in the schedule improvement algorithm enabled), the mode of the tonnage for

the distributions shifted from 1-2 days in the initial solution to 0-1 day in the final solution.

Note that the lowest UMMIPS time standard for these O-D pairs is four calendar days

(Robinson, 20 September 1993). Even in the initial solution, derived solely from the flow

algorithm, the quantity of cargo violating UMMIPS standards was less than five percent

(assuming a worst case UM? -iPS standard of four days for all O-D pairs).

no

4W0

CWTIS 35
(day4os) 350

3600

2O0

2001 INor INor 2 lNors 3 Ier4 Iters Itr$ I Nor

0 Flow Algordhm 0 Schedule huprovenwd Algodlm

Figure 17. Reduction in CWTIS for Test Run 8

46

200

W

120,

48,

1 00_ _ __ __

%44-

42.

3 4 7 a 11 12 Is Is

PAM PaI&

14 R ___ow ON _rl w OFF

Figure 19. Percent Reduction in CWTIS

VI.4 Jw~kab for Reflowing Cargo

Reflowing cargo in the schedule improvement algorithm can be a very involved

process. This process can only be justified if it achieves a significantly improved flow pattern.

Sixteen pairs of test run were performed (Appendix 0). Each pair consists of one run

with cargo reflow and one run with the reflow mechanism disabled. Figures 19 through 21

show the impact of the reflow capability. Figure 19 shows the total percent reduction in

CWTIS for those runs in which the entire amount of cargo was flowed. As the figure

47

314-

32

30-

26n-

1 2 3 4 5 1 7 1 5 10 11 12 13 14 1 16

Ru Pai

SRtallow ON 0 IPsow OFF

Figure 20. Percent Reduction in CWTIS on the First Iteration

3J-
3-

TOMs 2

0A

1 23$4 |67 8 i 101t12 131416 16

RMnPair

0 PRlow ON r PAl• OFF

]Figure 21. Tons with > 4 Days TIS

indicates, allowing cargo to be reflowed results in approximately a 5-10% additional reduction

in the CWTIS.

As Figure 17 shows, for Run 8 the largest reduction in CWTIS occurred on the first

iteration. This held true for all the test runs. Figure 20 shows that with the reflow mechanism

disabled, the amount of reduction in CWTIS on the first iteration is reduced by about 8%.

Finally, Figure 21 shows how the lack of a reflow capability may result in more cargo

possibly violating UMMIPS standards, assuming that the commodities in this sub-problem are

48

subject to a UMMIPS standard of four calendar days. TIis is a direct result of how the reflow

capability influences the time-in-system distribution of the commodities. In all test cases,

enabling the reflow capability shifted the mode of the time-in-system distribution from 1-2 days

to 0-1 days. However, in all test cases, the mode did not shift with the reflow mechanism

disabled. It is concluded that the reflow approach employed by the schedule improvement

algorithm provides enough additional benefit to warrant its use.

V.5 Flowed Cargo

The user-defined parameters affected the amount of cargo flowed by the cargo flow

algorithm. The total amount of cargo in the E/SWA sub-problem was 229.99 tons. Not all of

the runs were able to flow the entire amount. As shown in Figure 22, the amount of cargo

flowed ranged from a low of 202.78 tons in Run 9 to a high of 229.99 tons.

Recall that the iterative improvement algorithm continues to iterate only when

improvement is achieved. In all test runs in which all of the cargo (229.99 tons) was flowed,

that level was reached on the first iteration and was maintained throughout the remaining

iterations. In the test runs in which a lesser amount was delivered, the tonnage tended to grow

from iteration to iteration, indicating that changes made in the schedule improvement algorithm

changed the network sufficiently to allow the flow of additional cargo on subsequent iterations.

For example, Figure 23 shows how the cargo flowed on Run 5 grew throughout that run's four

iterations.

VI.6 Reflowed Cargo

The amount of cargo that was reflowed during each iteration of the flow/schedule

improvement algorithm varied greatly from run to run and from iteration to iteration within

each run in response to the user-specified parameters. Regardless of the parameters, the first

iteration always experienced the greatest reduction in CWTIS. It is not surprising that the

49

delmend 2Wtam - - -

1s. -, - -

1 2 3 4 5 1 7 8 9 W 11 12 13 14 1i f 6

PM

Figure 22. Cargo Flowed

132

1U-

Figure 23. Cargo Flowed on Run 5

first iteration typically, though not always, experienced the largest amount of cargo reflow

during Step Two. Figure 24 displays the amount of cargo reflowed on the first iteration for

each run using the E/SWA sub-problem. The flow values range from a high of 70.35 tons in

Run 8 to a low of 7.75 tons in Run 13. The chart values represent the percentage of the total

cargo reflowed.

50

36

%0I

t oW .

1 2 3 4 5 6I 7 1 I 10 11 12 13 14 1s I6

RuM

FIlgue 24. Percentages of Cargo Reflowed on First Iteration

VW.7 Parametric Analysis

This section addresses the influence on the final solution of the following parameters:

1) cargo flow priority, 2) mission order, and 3) the number of passes per iteration of the

schedule improvement algorithm.

VI. 7.1 Ca•go Flow Prioriy

Equal cargo priority is not possible due to the successive nature of the flow algorithm.

The cargo nodes that are selected first by the algorithm have a higher probability of being

flowed with lower TIS compared to cargo nodes that are flowed later. This is due to less

available capacity on the channel missions as more and more cargo is flowed. This

phenomenon is called cargo preference, since certain cargo appears to receive preferential

treatment by the cargo flow algorithm. Given O-D pairs with relatively small initial cargo

quantities, the order of cargo flow in the algorithm becomes less significant since less network

capacity is used. For the original E/SWA sub-problem with normal cargo levels, the order of

cargo flow had no effect on the initial cumulative flow quantity (all cargo was flowed). With

runs of the E/SWA sub-problem with the same flight schedule and collection of commodities,

but all cargo quantities multiplied by a factor often (resulting in total cargo equal to 2299.90

51

tons), the effect of cargo flow order became readily apparent. These runn (Runs 33-35) are

described in Appendix 0. The results are summarized in Table 1.

Options for cargo flow priority include: 1) arbitrary, which is the order the

commodities are listed in the cargo input file, 2) first in-first out (FIFO) based on time, and 3)

progressing from the largest quantities to the smallest.

Table 1

The Effect of Cargo Flow Priority on the Final Flow Pattern

Cargo
Run Flow Final Final

Number Priority Flow CWTIS

I default 2115.1 18151

2 FIFO 2298.9 21974

3 quantity 2227.7 20170

When the commodities were flowed according to their location in the cargo input file,

the final flow pattern did not flow all of the cargo. Many of the last commodities selected

could not be flowed due to the high utilization of the channel missions. When the cargo nodes

were flowed according to quantity (largest quantities first), the flow quantity was improved

over the default. When the cargo nodes were flowed according to time (first in, first flowed),

the flow quantity was greatest.

The difference among these options on cumulative flow quantity and CWTIS has been

observed to increase as cargo quantities increase. The FIFO criteria, though allowing the most

cargo flow in this test case, cannot be guaranteed as superior in all cases.

A possible benefit of cargo preference is the capability to flow any high priority cargo

as expeditiously as possible. We can create a single cargo generation node with that high

52

priority commodity's characteristics. By flowing it through a network in which no other

commodities have been flowed, the user can determine the fastest possible routing of that

commodity to get it to its destination. This capability would be beneficial when flowing small

size/weight commodities that are mission essential. For example, a small electronic component

could be flowed independently under the assumption that its size and weight are negligible to

the flow of the other commodities.

VI. 7.2 MWsioe Order

The choice of the mission order exerted some influence on the final solution. This

section explores this influence by comparing runs with various mission sorting criteria. Using

Runs I - 16 as shown in Appendix O, we created four sets of runs: Set I = (Runs 1, 5, 9,

and 13), Set 2 = (Runs 2, 6, 10, and 14), Set 3 = (Runs 3, 7, 11, and 15), and Set4 =

(Runs 4, 8, 12, and 16).

Although the sets differ in various parameter settings, the four runs within each set

differ only in the mission order parameter. The first run within each set sorts the missions

according to the default (the order provided by STORM and CARGPREP). The second run

within each set sorts the missions in the reverse order relative to the default. The third run

within each set sorts the missions according to descending mission utilization. The last run

within each set sorts the missions according to ascending mission utilization.

Figures 25 through 28 show how the delivered cargo and associated CWTIS differ

within Sets 1, 2, 3, and 4, respectively. Table 2 shows the best and worst mission orders

within each set. In some sets, there are multiple entries in these two categories. Some runs

within the sets were essentially equal, making it misleading to identify only one order as the

best or worst. For example, in Set I the best order is listed as either the default order or the

order based on ascending utilization, corresponding to Runs I and 13, respectively. Run 1

achieved a flow of 211.93 tons, compared to 212.07 tons in Run 13. Since these amounts are

53

3WO
no

me

210
2OO

RMI RMIl RIM R=ml3

i Flw #omf 1cwrM u4ua-•

Figure 25. Comparison of Set 1

3OW

2M

230

run 2 RMin RinW Run 14
(deo"lt (ree deM (d N (e

M Flow (ons) CWrs (day4ons)

Figure 26. Comparison of Set 2

54

g202t0
230

.Run3 Ruin Run 11 RlI
(d umn VmemsddmMu (dwand ----

uMMUMon) udkazion)

inFlow (mons) DCWnS (day400

Figure 27. Comparison of Set 3

290
290

210

2300

00Run4 Run8 Run12 Rm If

um~zk, n) uzt)

0 Flow (WOm) DCn ~S (day,.ons)

Figure 28. Comparison of Set 4

virtually equal, we looked at CWTIS to further distinguish the two runs. Run 1 achieved a

CWTIS of 247.32 day-tons, while Run 13 achieved 241.72 day-tons. Again, these values are

virtually equal, making it difficult to label either as the definitive best.

55

Table 2

Best and Worst Mission Orders

Set Best Mission Order Worst Mission Order

default or reverse default or
1 ascending utilization descending utilization

default or reverse default or
2 ascending utilization descending utilization

reverse default or default or
3 ascending utilization descending utilization

default or
reverse default or

4 ascending utilization descending utilization

From the table, we see that ascending mission utilization achieved a better flow pattern

than descending utilization in all cases. Additionally, ascending utilization seems to be the

superior method for mission ordering with these data sets. These results are based on the

E/SWA sub-problem and cannot be extended with certainty to other data sets without further

testing.

VI. 7.3 Passes Per Iteraion of the Schedule Improvement Algorithm

Testing established that allowing the algorithm multiple passes leads to a better final

solution than the final solution with only a single pass of the schedule improvement algorithm.

This section presents, through a comparison of key runs, the magnitude of the solution

difference when using multiple versus single passes through the schedule improvement

algorithm.

56

As mentioned earlier, the best solution occurred on Run 8, which allowed multiple

passes. Run 8 was regenerated with the pass parameter reset to 1 (a single pass). The results

of the two runs are compared in Table 3 below. As the table reveals, increasing the running

time of the program resulted in an additional 7% reduction in CWTIS.

Table 3

Intluence of the Number of Passes on the Solution

Iterations Time Final Final reduction
Run Passes Required (relative) Flow CWTIS in CWTIS

8 multiple 6.5 1.00 229.99 231.44 52%

8 single 4.5 0.25 229.99 262.97 45%

We now examine in more detail the flow patterns produced by these two test runs.

Table 4 and Figure 29 show the time-in-system distributions of the cargo flow for the two

runs. With multiple passes, the CWTIS is reduced by an additional 7% over the single pass.

This directly equates to more cargo spending less time in the system. As the table shows, 64%

of the cargo spends less than one day in the system in the multiple-pass scenario, compared to

only 51 % in the single-pass scenario. Furthermore, the single-pass scenario has 0.83 tons of

cargo spending more than four days in the system, potentially violating UMMIPS standards.

By sacrificing running time, the user can obtain a substantially improved schedule with the

multiple pass option. It should be noted that the user sets a maximum number of passes per

iteration. In the run above, this was set to 10, but no more than five passes were ever required

on any iteration.

57

Table 4

TIS Distributions for the Multiple- and Single-Pms Run 8

Multiple Pass Single Pass

Days in Tonnage % Total Days in Tonnage % Total
System Delivered delivered System Delivered Delivered

0-1 148.04 64% 0-1 116.81 51%

1-2 62.46 27% 1-2 86.44 38%

2-3 15.77 7% 2-3 21.16 9%

3-4 3.72 2% 3-4 4.75 2%

4-5 0.00 0% 4-5 0.83 < 1%

INI

410
20

0 -I Days I -2 Days 2 -3 Days 3-4Days > 4 Days

M Multiple Pasn DSingle PaM

FIgure 29. TIS Distributions for Run 8

58

WI1. Coadudsoas sad Renmsuul

VIIII Ge..ltt

The overall research objective, which was to develop an Iterative process for efficiently

scheduling airlift and flowing cargo, was achieved. The iterative improvement algorithm,

consisting of the heuristic flow and wichedule improvement steps, effectively increases the level

of channel cargo flow while reducing CWTIS.

This chapter discusses some of the strengths of the iterative improvement algorithm as

well as possible avenues for improvement or modification.

VII.2 Strengths of the iterative Improvment Algorihm

The iterative improvement algorithm provides a timely solution. For the E/SWA sub-

problem with 20 commodities and 213 missions, overall run times ranged from approximately

fifteen minutes to two hours. This time varies with certain parameters: the maximum number

of transshipments allowed, the relative quantities of the individual cargo nodes, and the number

of passes through the schedule improvement algorithm per iteration. All of the test runs were

accomplished on a Sun workstation usirg Unix FORTRAN.

The iterative improvement algorithm is highly compatible with the current AMC

scheduling process, making validation with CARGOSIM fairly straightforward. FORTRAN

code was written to preprocess STORM and CARGPREP output into data formats that are

input directly into the iterative improvement algorithm. This code is listed in Appendix C.

VII.3 Recommedations for Future Research

As discussed in Chapter IV, the cargo flow heuristic follows the basic steps of the

Busacker-Gowen min-cost flow algorithm, excluding the addition of reverse arcs into the

network. These arcs were deemed detrimental in terms of computational efficiency and flow

path control. If these reverse arcs could be introduced into the network without producing

59

these negative effects, the solution of the cargo flow heuristic could be improved. This

addition would necessitate modifications to the S-P algorithm since Dijkstra's algorithm can

only process nonnegative arc costs.

The flow algorithm terminates calls to Dijkstra's S-P algorithm whenever a path is

found which exceeds the maximum allowable number of transshipments. This means that the

current commodity will get no further attempts at flow paths of longer TIS with possibly fewer

transshipments. The code could be extended to cover this contingency.

The flow of a commodity is "yes-or-no" and is predicated on determination of a path

from origin to destination. Consideration should be given to flowing these goods to an

alternate destination. For example, if AMC were attempting to deliver a piece of cargo from

the Continental United States (CONUS) to the European theater, say Dover AFB to Rhein-

Main AB, the S-P algorithm might return a "no" condition, implying that there are no paths

(i.e. missions) that can get the cargo there within the current planning horizon. Certainly,

getting the cargo to another, alternate destination in close proximity to the original destination

would seem preferable to leaving it in the CONUS. Once in theater, other modes of

distribution, such as ground transportation, could be used. In AMC's case, transporting the

cargo to Ramstein, Bitburg, etc. could be the next best thing; at least the cargo is closer to its

destination if it is carried over into the next planning horizon. The methodology does not

currently attempt this, since no alternate destination data was available. However, the

extensions to the code would be minimal.

The network, if the parameters allow for it, will generate transshipment arcs of zero

time length. In real life, this would translate into a frantic loadmaster, unable to download and

upload cargo in zero time. This condition was allowed to exist due to the uncertainty of many

of the model parameters. Takeoff times, as well as flying times between airbases, are

approximate expected values subject to variation. Additionally, aircraft commanders, if given

knowledge of the upcoming requirement for cargo download, can often adjust flying times

60

appropriately when needed. This is considered a minor drawback of the algorithms. If this

assumption is not acceptable, the network generator can be changed to establish transshipment

arcs only when a minimum time differential is present.

An assumption in Chapter I stating that airbases can handle unlimited aircraft and

cargo and are available 24 hours a day may not be realistic. Ile schedule improvement

algorithm could, if conditions were right, shift the mission set so that particular airbases could

become overwhelmed with aircraft. AMC refers to this as a MOG violation, where MOG is

the maximum number of aircraft on the ground that an airbase is equipped to handle. There

currently is no feasibility check within the algorithm to prevent this phenomenon. The

algorithm could also reschedule a mission for any time of day, which may be unrealistic. Both

of these limitations could be addressed in future research at AFIT or AMC.

The schedule improvement algorithm only implements time shifts to an earlier time.

While it seems almost counter-intuitive to shift a mission to a later time in order to reduce the

CWTIS, such a possibility exists. In the current methodology, a reduced CWTIS does not

necessarily mean that all the cargo reached the customer sooner. While some cargo admittedly

may reach a customer later because of the time shift, the savings the shift brings to the overall

flow pattern may warrant such a shift.

VII.4 Validation

Following this research, the next logical step is for AMC or AFIT to test this approach

in conjunction with STORM, CARGPREP, and CARGOSIM. The testing should evaluate the

quality of the output schedule and the usefulness of the procedure developed in this research.

Appendix A outlines all necessary steps and data structures to implement and integrate the

iterative improvement algorithm within AMC's current advance planning process.

61

AppAdfx A: Progru &Fcuiion Guide

This appendix contains the program execution guide, which is intended to aid the user
in compiling, running, and interpreting the output of the iterative improvement algorithm (main
program, Appendix B) developed in this research. Data input/output files and structures are
addressed as necessary and appendix reference is provided, if applicable.

The main program was developed to interface with the STORM and CARGPREP
output. To facilitate this, a FORTRAN program "makesked.f" (Appendix C) was written to
preprocess the STORM and CARGPREP output and generate the "schedule.dat" file that is
input into the main program. Makesked.f requires the following input files: schedule.raw
(Appendix D), jet.dat (Appendix E), fly.dat (Appendix F), and routes.dat (Appendix G).

The main program requires the following input files : cargo.dat (Appendix H),
schedule.dat (Appendix 1), param.dat (Appendix J), and trnbases.dat (Appendix K).

Once all of the necessary files (Appendices B-K and Appendix P) have been placed into
the current working directory, perform the following steps:

1) Compile and run the "makesked.f" program.

2) Edit the "param.dat" file to select the required values for the user-specified
parameters.

3) Compile and run the main program (Citerate.f").

4) The user can monitor the main program through on-screen output. The current
iteration and subroutine are displayed.

5) At program termination, the following output files will be present (*xxx" prior to
the ".c" extension will contain th ation number (e.g. "001") when the file was
created): postxxx.c (Appendix ýI-sxxx.c (Appendix M), run.c (Appendix N),
cflowxxx.c (Appendix L), networiL.at, iterate.out, alt.out, alt2.out, paths.out, and
count.out. Some of the output files are used by the program during execution and are
not shown in an appendix. The purpose and format of these files are discussed within
the main program comments.

6) To convert the schedule created by "iterate.f* into the format required for validation
by CARGOSIM, compile and run the program "makeraw.f" (Appendix P).

62

App~adix B.- Main Pregre. lislag

Thia appendix contains the main program listing written in Unix FORTRAN 77. The
program contains the iterative improvement algorithm as well as all supporting subroutines,
including the cargo flow heuristic ("CARGPFLO") and the schedule improvement heuristic
("MODMSN"). Instructions for compiling and running this program are contained in the
Programn Execution Guid at Appendix A.

PROGRAM ITERATEF

*ITERATIVE IMPROVEM*ENT ALGORITHM

*MAIN PROGRAM CODE

INTEGER N~NUMCAR~NUMSNKNUMMSNITER,FLONUM(4999)
INTEGER POINT(4999,2)
INTEGER ARCNUM
INTEGER MAXITMAXALTMAXTtNCARCRIPASSES
INT1EGER TRtNDIS(60),TRNS(500)
INTEGER SORCRITRNSHIPTERCRI

REAL TOTFLOTOTALBESTINFMODFLO
REAL COSCAP(89999,8),NODES(4999,4),TNODES(4999,4)
REAL PRED(4999),DIST(4999),INF
REAL EPSILONTISDIS(60),TIMEPS

CHARACTER NODIKO(4999,2)*4,SKEDLN0SO

COMMON /CONSTS/ N, INP, NUMCAR, NUMSNK., NUMMSN, ITEREPSILON
COMMON /PARAMS/ MAXITMAXALTMAXTtNCARCRIPASSESSORCRITMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /SCHED/ FLONUM

C THE FOLLOWING ALLOWS schedule.dat TO REMAIN THE SAME. THE SUBROUTINES
C WILL USE newsched~daL

OPEN(UNIT-l FILE='schrcdulc.dat',STATUS='OLD',FORM='FORMA1TED')
OPEN(UNIT=2,FILE='ncwuchcd~dat',STATUS='UNKNOWN',FORM='FORMA1TED')
OPEN(UNIT=7,FILE='nuLc',STATUS='UNKNOWN',FORM='FORMATTED')

DO 1 1=1,999999999
READ(l ,3,END=2)SKEDLN
WRITE(2,3)SKEDLN

3 FORMAT(A80)
1 CONTINUE
2 CLOSE(1)

63

CLOSE(2)
C FOLLOWING WILL READ IN pazaumdat valuecs

OPEN(UNIT=1 ,FILE='pandat',STATUS=ýOLD',FORM='FORMATrED')
READ(1,*) MA~UT
READ(1,0) MAXALT
READ(1,*) MAXTRN
READ(1,s) CARCRI
READ(1,*)SORCRI
READ(1,*) PASSES
READ(1,s) TRNSIIIP
READ(1,*) EPSILON
READ(1,*) TIMEPS
WRITE(7,)'Paramctcrs:'
W~l`IE(7,*)
WRffEW,11MAXIT

I1I FORMAT(14,4X,'MAXIT)
WRITE(7,12)MAXALT

12 FORMAT(14,4X,'MAXALr)
WRrITE,13)MAXTRN

13 FORMAT(14,4X,MAXTRN')
WRITE(,14)CARCRI

14 FORMAT(I4,4X,'CARCRI-)
WRITE(7,1 6)SORCRI

16 FORMAT(14,4X,'SRCRI')
WRITE(7,17)PASSES,

17 FORMAT(14,4XI'PASSES')
WRITE(7,18)TRNSIUP

18 FO)RMAT(14,4X,'TRNSHIP)
WRrTE(7,19)EPSILON

19 FORMAT(F5.3,3X,-EPSILON')
WRITE(,21)TIMEPS

21 FORMAT(F5.4,3X,'TIME EPSILON')
W~TE(7,*)
WRnW,*)

CLOSE(1)
INF=99999999.9
TOTFLO=O.O
TOTAL=O.O
BEST=INF
MODFLO=0.O
ITER= 1
OPEN(UNIT= 1O,FLE='itcratc.out',STATUS='UNKNOWN',FORM='FORMATTED')
WRITE(1 ,0)
WRrTE1O,*)'»»»> itcratc.out <<««<
WRrIT1O,*)
WRITE(¶YrNE-TM1AKYE CALLED'

5 CALL NETMAKE(TRNSHIP)
WRITE(*)'CARGFLO CALLED'
WRITE(7,*)'CARGFLO CALLED'
CALL CARGFLO(TOTFLOTOTAL)
WRrME(*)TOTFLO,TOTAL
WRTE(,*)TOTFLO,TOTAL

64

C CRITERION FOR TERMINATION
IF((ABS(TOTFLO-MODFLO).LT.EPSILN)) THEN

IF(C1'OTALGT.BEST)) GOTO 10
IF(ABS(TOTAL-BEST).LT. EPSILON) (JOTO 10

ENDIF
IF(TOTFLO.LT.M[ODFLO) GOTO 10
IF (ITER.OT.M[AXIT THEN
WRrrE(10,0)
WRrITE1,)' MAX NUMBER OF ITERATIONS EXCEEDED.-
GOTO 10
ENDIF
WRITE(¶)'POSTPROC CALLED'
CALL POSTPROCO
WRrME(,*)'COUNTER CALLED'
CALL COUNTERO
WRITE(*,YPREMOD CALLED'
CALL PREMODO
WRrrE(*,*)'MODMSN CALLED'
WRITE(7)'YMODMSN CALLED'
CALL MODMSN(BESTMODFLO,TOTALTERCRI)
WRTE(,*)M[ODFLO,BEST
WRITE(7,*)M[ODFLO,BEST
IF(TERCRI.EQ. 1) GOTO 10
WRrIT(0,*)
WRrITE1,)' ITERATION: 'ITER
WRITE(10,)' CARGO FLOWED (TONS): ',TO)TFLO
WRITE(10,)' TOTAL CHANNEL COST (DAY-TONS): ',TOTAL
WRITE(*,*YTERATION ',ITER,' COMIPLETED.'
WRITE(*,)Y'
WRrTE(7,*YITERATION ',TER,' COMIPLErE.'
W'RrrE(7,*) '
rrER=rrER+ 1
GOTO 5

10 WRrMIT10,*)
WRrIT(0,*)' NO FURTHER IM[PROVEMENT - TERMINATED.-
CLOSE(10)

20 STOP
END

cNETWORK GENERATOR ALGORITHM[FOR THE CHANNEL CARGO SYSTEM
c

c PROGRAM WILL READ DATA FILES cargo.dat' AND
c'newschecddat' AND GENERATE THE NETWORK TO

c INPUT INTO THE BUSACKER-GOWEN MINIMUM COST FLOW
cALGORITHM OUTPUT FROM PROGRAM WILL Go INTO FILE
c'networikdat', WHICH WILL HAVE A STANDARDIZED FORMAT:

C

c VARIABLES USED:
C

c N : NUMBER OF NODES IN THE NETWORK
c NUMCAR :NUMBER OF CARGO NODES IN THE NETWORK
c NUMSINK NUMBER OF SINK NODES IN THE NETWORK

65

c INF: VALUE OF INFINITY USED IN ARRAYS
C
c COSCAP: Nx8 MATRIX OF ARC COSTS/CAPACITIES/FLOWS
c AS WELL AS TEMP STORAGE FOR THESE VALUES
c COSCAP IS A MODIFIED 'LINKED ADJACENCY LIST' THAT
c LISTS THE FORWARD STAR FOR ALL NODES WITHIN THE NETWORK
C ARRAY 'POINT' WILL BE A POINTER ARRAY FOR THE STAR FROM
C THE SPECIFIED NODE (SEE BELOW). COSCAP IS FORMATTED:
C
C COSCAP(X,1): END NODE OF ARC X
C COSCAP(X,2): COST (TIME) OF GIVEN ARC
C COSCAP(X3): CAPACITY (TONS) OF GIVEN ARC
C COSCAP(X,4): FLOW (TONS) OF GIVEN ARC
C COSCAP(X,5): TEMPORARY COST (TIME) OF GIVEN ARC
C COSCAP(X,6): TEMPORARY CAPACITY (TONS) OF GIVEN ARC
C COSCAP(X,7): TEMPORARY FLOW (TONS) OF GIVEN ARC
C COSCAP(X,8): MISSION (#) WHICH ARC TERMINATES TO
C
C POINT: Nx2 MATRIX OF POINTER LOCATIONS FOR NODES:
C
C POINT(Y,1): FIRST ARC LOCATION IN COSCAP FOR NODE Y
C POINT(Y,2): LAST ARC LOCATION IN COSCAP FOR NODE Y
C
C IF A GIVEN NODE HAS NO FORWARD STAR (NO ARCS BEGINNING
C THERE), THEN POINT(N,I),POINT(N,2) WILL EQUAL -1.
C
c NODES: Nx4 MATRIX DESCRIBING NODE SET IN NETWORK
c (N,I) COLUMN IS NODE DESCRIPTOR, WHERE:
c -1 : CARGO GENERATION NODE AT N
c 0: SINK NODE AT NODE N
c 1 : NODE N REPRESENTS A MISSION AIRBASE ORIGIN
C (FIRST BASE FOR THE ROUTE)
c 2: NODE N REPRESENTS AN INTERMEDIATE MISSION AIRBASE
c 3: NODE N REPRESENTS A MISSION AIRBASE DESTINATION
C (LAST BASE FOR THE ROUTE)
c (N,2) COLUMN IS NODE TIME
c (N,3) COLUMN IS TONS OF CARGO FOR A CARGO GEN. NODE
c ACCAPA STORED HERE FOR MISSION LEGS BETWEEN
C DISTINCT AIRBASES, INF FOR GROUND/RON TIME
C DURING A MISSION
c (N,4) COLUMN IS THE MISSION NUMBER ASSOCIATED WITH
C THE GIVEN AIRBASE (0 FOR SOURCE/SINK NODES)
C MISSION NUMBERS ASSIGNED FROM 001 ASCENDING
C
c NODIKO : Nx2 MATRIX (BOTH FIELDS CHARACTER) DESCRIBING NODES
c (N, 1) COLUMN IS ORIGIN AIRBASE IDENTIFIER FOR A
c CARGO GENERATION NODE (N,1)=- I ABOVE
c THIS WILL ALSO APPLY FOR A SINK NODE (N,1)=0
c WHERE THE VALUE IN (N,3) WILL BE THE NUMBER
c IDENTIFIER OF THE AIRBASE THE NODE SINKS FOR.
c FOR A MISSION AIRBASE, THIS WILL BE ITS ICAO.
c (N,2) COLUMN IS DESTINATION AIRBASE IDENTIFIER FOR

66

c A CARGO GENERATION NODE ABOVE
c
cACTYPE: AIRCRAFT' TYPE IDENTIFIER (CHARACTER44) (I.E. C141)
cACCAPA: CORRESPONDING AIRCRAFT CAPACITY IN TONS (I.E. 20)

(THIS WILL BE MISSION LEG ARC CAPACIT-Y)
cARCNUM: COUNTER FOR NUMBER OF ARCS CREATED THUS FAR

SUBROUTINE NETMAXE(TRNSHIP)

INTEGER NKTEM[P
INTEGER NUMCARNUMSNKNUMMSNNJTERARCNUM
INTEGER WEEKUNIQUE
INTEGER POINT(4999,2)
INTEGER TRtNDIS(60),TRNS(500)
INTEGER TRNSHIPNOTRBSNUMNOD

REAL COSCAP(89999,8)
REAL NODES(4999,4),TNODES(4999,4)
REAL INFDIST(4999),PRED(4999)
REAL ACCAPACOSTMPCATMP
REAL TMPDELTA
REAL DAYCUM(g),RATIO
REAL EPSILONTISDIS(60)

CHARACTER NThNA*8,NS*3,EXyj2,P()(3)* 1
CHARACTER*4 NODIKO(4999,2)
CHARACTER4 ORIGINDESTACTYE
CHARACT7ER*4 ThNBAS(499)

COMMON /CONSTS/ N, INF, NUMCAR, NUM[SNK-, NUMMSN, TEREPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON MFOW/ PRED, DIST, ARCNUM, TRtNDIS, T-RNS, TISDIS

ACCAPA=O.O
N=O
NUMCAR=0
NUM[SNK=O
ARCNUM=0
DAYCUM(1)=O.O

c INITIALIZE DATA ARRAYS
DO 250 1=1,89999

DO 260 J= 1,7
COSCAP(14)=-0.0

260 CONTINUE
250 CONTINUE

DO 255 1=1,4999
NODESQ1,1)=O.0
NODES(I,2)=0.0
NODESQ1,3)=0.0
NODIKOl,l)--'
NODIKOQ1,2)=-'

255 CONTINUE

67

C IF TRNSHIP-- 1, 'tnbueg.dat' READ TO LIMIT TRANSSHIPMENT BASES
IF (TRNSHIP.EQ. 1) THEN
OPEN(UNIT-' 1 ,ILEtrOnbeacg.dat',STATUS='OLD',FORM='FORMA1TED-)
READ(1,*)NOTRBS
DO 257 I=1IN0TRBS

READ(1,O)TRNBAS(I)
257 CONTINUE

CLOSE(l)
ENDIF
OPENNIT=1,HLE='csrgo.datTATUS='OLD',ORM=FORMATTED')

C CARGO.DAT MODIFIED FROM PREVIOUS FORMAT IN ORDER TO FACT'OR THE
C WEEK INTO THE CARGO GENERATION SCHEME. ADDITIONAL COL ADDED AFTER
C THE INITIAL TWO ICAOS IN ORDER TO INDICATE WHICH WEEK OF THE PLANNING
C HORIZON THE SEVEN SUBSEQUENT COLUMNS REPRESENTED (STARTS @ WEEK 0)

DO 200 1=1,99999999
READ(I ,201 ,ND=202)ORIGIN,DEST,WEEK,(DAYCUM(J)4=2,8)

201 FORMAT(A4,1XA4,1X,12,7(F7.2))
DO 203 J=2,S
IF (DAYCUM(4)GT.DAYCUM(J-l)) THEN
N=N+ 1
NODES(N,1)=-l
NODES(N,2)=(WEEK*7.0)4-(J-2)
NODES(N,3)=DAYCUM(J)-DAYCUM(J- 1)
NODIKO(N,1)=ORIGIN
NODIKO(N,2)--DEST
ENDIF

203 CONTINUE
200 CONTINUE
202 CONTINUE
c STORE WHERE REMAINDER OF NODES SHOULD PICK-UP AFTER CARGO GEN NODES

NUMCAR=N
OPEN(UNIT-2,FILE='ncwuchcddat',STATUS='OLD',FORM='FORMATTED')
READ(2,*)NUMMSN
DO 206 I= INUMMSN
READ(2,204)NUMNOD,ACTYPE,ACCAPA

204 FORMAT(13,1XA4,F5. 1)
C FOLLOWING DIS-TINQUISHES BETWEEN MISSION AIRBASES

DO 207 J=INUMNOD
N=N+ 1
IF (J.EQ. 1) THEN
NODES(N,l)=l

ENDIF
IF ((J.GT. 1).AND.(J.LT.NUMNOD)) THEN
NODES(N,1)=-2

ENDIF
IF (J EQ.NUMvNOD) THEN

NODES(N,l)=3
ENDIF
READ(2,*)NODIKO(N,1),NODES(N,2)
NODES(N,3)=ACCAPA
NODES(N,4)=l

207 CONTINUE

68

206 CONTINUE
c NOW TO PRODUCE THE SINK NODES, WHICH WILL BE DETERMINED BY SCANNING ALL
c OF THE CARGO GENERATION NODES' DESTINATIONS (NODES(N, 1)=- 1=>CARGO NODE),
c USE ICAO OF NODIKO(N,2) AS SINK IDENTIFIER.
c THE SINK MATRIX IS SCANNED, THEN A NEW SINK NODE IS CREATED EVERY TIME
c A DISTINCT SINK ICAO APPEARS.

DO 209 I=1,NUMCAR
UNIQUE=1
DO 2103J=l,-1

IF (NODIKO(I,2)EQ.NODIKO(J,2)) THEN
UNIQUE=0

ENDIF
210 CONTINUE
c CREATE DISTINCk SINK NODE IF UNIQUE= I

IF (UNIQUE.EQ. 1) THEN
NUMSNK=NUMSNK+ 1
N=N+ 1
NODES(N,I)=O
NODIKO(N,1)=NODIKO(I,2)

ENDIF
209 CONTINUE
C NOW THAT NODES/NODIKO ARE CREATED, THE LINKED ADJACENCY LIST
C NEEDS TO BE CREATED BY GOING NODE BY NODE THROUGH THE NETWORK
C (EXCLUDING THE SINK NODES AT THE BOTTOM WHICH WILL HAVE NO NODES
C ORIGINATING FROM THEM) AND LISTING INFO FOR ALL ARCS EMANATING
C FROM THE SPECIFIED NODE

DO 350 K=IN-NUMSNK
POINT(K,I)=ARCNUM+1

C ADD ARCS TO CONNECT CARGO TO ORIGIN AIRBASES BELOW:
C (RETAIN ALL ARCS VERSUS SINGLE ARC FROM CARGO TO ORIGIN
C AIRBASE OF LEAST TIME, IN CASE TRANSSHIPMENTS ARE RESTRICTED
C IN THE FUTURE (I.E. CERTAIN BASES NOT ALLOWED TO TRANSSHIP))

IF (K.GT.NUMCAR) GOTO 215
DO 220 J=NUMCAR+ iN-NUMSNK

IF(NODIKO(J,I).EQ.NODIKO(K,I)) THEN
IF(NODES(J,2).GE.NODES(K,2)) THEN
ARCNUM=ARCNUM+ 1
COSCAP(ARCNUM,1)=J
COSCAP(ARCNUM,2)=NODES(J,2)-NODES(K,2)
Cr',CAP(ARCNUM,3)=INF

ENDIF
ENDIF

220 CONTINUE
C THIS LOOP ADDS MISSION ARCS
215 IF ((K.GT.NUMCAR).AND.(NODES(KI).LT.3)) THEN

ARCNUM=ARCNUM+ 1
COSCAP(ARCNUM,I)=K+ 1
COSCAP(ARCNUM,2)=NODES(K+ 1,2)-NODES(K,2)
IF (NODIKO(K,I).NE.NODIKO(K+1,1)) THEN

COSCAP(ARCNUM,3)=NODES(K,3)
ELSE

69

COSCAP(ARCNUM,3)=INF
ENDIF

ENDIF
C ADD ARCS TO ALLOW TRANSSHIPMENTS BELOW
C RESTRICTED TO A SPANNING PATH VERSUS ALL POSSIBLE
C ARCS PREVIOUSLY, WHICH WAS EXPLOSIVE.
C LOOP WILL SCAN MISSION NODES FOR A GIVEN ICAO AND
C LINK THEM IN A PATH BASED ON TIME SEQUENCE,
C NOTE: CYCLES MAY BE INTRODUCED TO THE PATH IF TWO
C AIRBASES WITH THE SAME ICAO HAVE THE SAME TIME

IF (K.LE.NUMCAR) GOTO 245
C IF TRNSHIP=0, NO TRANSSHIPMENT ARCS ALLOWED; BYPASS.

IF (TRNSHIP.EQ.0) GOTO 245
C IF TRNSHIP=1, SCAN TRNBASO TO CHECK IF ALLOWED.

IF (TRNSHIP.EQ. 1) THt-N
DO 239 I=INOTRBS

IF (TRNBAS(1).EQ.NODIKO(K,1)) GOTO 242
239 CONTINUE

GOTO 245
ENDIF

C INSTALL TRANSSIPMENT ARC
242 TMP=INF

J=0
DO 240 I=NUMCAR+ I,N-NUMSNK

IF (I.EQ.K) GOTO 240
IF ((I.EQ.K+ 1).AND.(NODES(K,I).LT.3)) GOTO 240
IF (NODIKO(I,I).EQ.NODIKO(KI)) THEN

DELTA=NODES(I,2)-NODES(K,2)
IF (DELTA.GT.0.0) THEN
IF (DELTA.LE.TMP) THEN

"TMP=DELTA
J=I

ENDIF
GOTO 240

ENDIF
C BASES WITH THE SAME TIMES ARE LINKED AUTOMATICALLY
C (WILL BE IN BOTH DIRECTIONS WHEN THE I-LOOP IS DONE)

IF (DELTA.EQ.0.0) THEN
ARCNUM=ARCNUM+ 1
COSCAP(ARCNUM, I)=I
COSCAP(ARCNUM,2)=DELTA
COSCAP(ARCNUM,3)=INF

ENDIF
ENDIF

240 CONTINUE
C IF-THEN ESTABLISHES SINGLE ARC TO CLOSEST TIME AIRBASE

IF (J.NE.0) THEN
ARCNUM=ARCNUM+ 1
COSCAP(ARCNUM, I)=J
COSCAP(ARCNUM,2)=NODES(J,2)-NODES(K,2)
COSCAP(ARCNUM,3)=INF

ENDIF

70

c ADD 0 COST ARCS THAT CONNECT NODES TO SINKS BELOW:
245 IF (K.LE.NUMCAR) GOTO 230

DO 235 J=N-NUMSNK+ 1$
IF (NODIKO(J,1).EQ.NODIKO(KYl)) THEN
ARCNUM=ARCNLJM+ 1
COSCAP(ARCNUM,1)=J
COSCAP(ARCNUM,2)=0.O
COSCAP(ARCNUM,3)=INF
GOTO 237

ENDIF
235 CONTINUE
237 CONTINUE
230 POINT(K,2)=ARCNUM
C IF-THEN DETERMINES IF ANY ARCS ORIGINATE FROM NODE K

IF (POINT(K12).LT.POINT(K,1)) THEN
POINT(K,I)=- 1
POINT(K,2)=- 1
GOTO 350

ENDIF
C FOLLOWING LOOP SORTS ARCS FROM GIVEN NODE (ASCENDING)
C ALL CARGO NODES WILL BE SORTED, SKIP THIS LOOP

IF (K. LE.NUMCAR) GOT`O 350
IF (POINT(K,2).EQ.POINT(K,1)) GOTO 350
DO 352 I=PO[NT(K,1),POINT(K,2)
TEMP=--1
TMP=-INF
DO 354 J=IPOINT(K,2)

IF (COSCAP(J,1).LE.TMP) THEN
TMP-=COSCAP(J,l)
TEMP--J

ENDIF
354 CONTINUE

COSTMP=COSCAP(TEMP,2)
CAPTMP-=COSCAP(TEMP,3)
COSCAP(TEMP,l)=COSCAP(I,l)
COSCAP(TEMP,2)=COSCAP(I,2)
COSCAP(TEMP,3)=COSCAPQ1,3)
COSCAP(I,1)=TMP
COSCAP(I,2)=COSTIMP
COSCAP(I,3)=CAPTMP

352 CONTINUE
350 CONTINUE
C FOLLOWING LOOP STORES -I IN POINT FOR SINKS

DO 360 K=N-NUMSNK+lN
POMN(K,1)=-l
POINT(K,2)=- I

360 CONTINUE
OPEN(UNIT=3,FILE='nctworLdae,STATUS=IJNKNOWN',FORM='FORMATrED')
WRrTE3,*)N
WRrTE3,*)NUMCAR
WRrTE3,*)NUMSNK
WRrrE(3,*)INF

71

DO 290 I=1,ARCNUM
WRrTE3,365)I,(COSCAP(IJ),1-1,4)

365 FORMATQ15,2xFS.0,2xF7.3,2xF3.2,2xF.3)
290 CONTINUE

DO 295 I= lN
WRITE(3,370)I,(POINT(1,J),J= ,2)

370 FORMATQ15,3x415,3x,IS)
295 CONTINUE

WRrM3EO)
DO 325 I=1,N
WRrTE3,330)I,(NODES(1,J),J=1,3),(NOD[KOQI,J),J- 1,2)

330 FORMAT(IS,lxFS.1,2xF6.2,2xF7.2,2xcA4,2xA4)
325 CONTINUE
340 CLOSE(1)

CLOSE(2)
CLOSE(3)
RETURN
END

c CARGO FLOW ALGORITHM
C

c variable CARCRI used to vary cargo flow sequence:
cCARCRI= 1 ->Default, flowed in order of cargo.dat
cCARCRI=2 ->Flowed in ascending arrival time order

c CARCRI=3 ->Flowed in descending cargo quantity
C

c code applies successive shortest path inipletnetaton
c adjusting the network capacity as it goes along
c (uses DIJKSTRA and not 'PDM! to find path)
C
c Array TISDIS added to track distribution of cargo flow
c based on time-in-system.

SUBROUTINECARGFLO(TOTFLO,TOTAL)

INTEGER NST44,Q,R
INTEGER FLPATH(4999),FLNUMCURNODE
INTEGER STPATH"NMCAR~NUMSN`KNUMMSNIERTEMP
INTEGER POINT(4999,2)
INTEGER ARCNUMARCTMP
INTEGER BSTWSTLOTRN
INTEGER CARGPT(4999),SORT(4999)
INTEGER TRNDIS(60),TRNS(500)
INTEGER MAXITMAXALTMAXTRN,CARCRIPASSESSORCR[

REAL CURRENDELTADTARGETTOTALINFRATIO
REAL COSCAP(89999,8)
REAL PRED(4999),DIST(4999),NODES(4999,4),TNODES(4999,4)
REAL COMCOSTTOTFLO
REAL CAPAIJFLOWIJ
REAL EPSILONTISDIS(60),TIMEPS

72

CHARACTER04 APOEAPOD
CHARACTER04 NODIKO(4999,2)
CHARACTER MCNAM I 0NS*3,EXT*2,POS(3)* I

COMMON /CONSTSI N, INF, NUMCAR, NUMSNK,, NUMMSN, ITERýEPSILON
COMMON /PARAMS/ MAXUTMAXALTMAXTRNCARCRIPASSES,SORCRITINMEP
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

TOTFLO=O.0
UNFLOW=0.0
TOTAL=0.0
OPEN(U1Th-4,FILE='paths.out',STATUS='UNKNOWN,FORM='FORMA1TED')
OPEN(IJNIT= 11 ,FLE='alt~out',STATUSý--UNKNOWN',FORM='FORMA1TED')

c FLOW/TCOST must be stored thna all commodities
DO 450 I=1,ARCNUM

COSCAPQ1,4)=0.0
COSCAP(I,5)=COSCAP(I,2)
COSCAPQ1,6)=COSCAP(I,3)
COSCAP(I,7)=0.O

450 CONTINUE
DO 452I= 1,60
TRNDISI)=-0
TISDIS(I)=O.0

452 CONTINUE
c following scans network for all cargo nodes and dotermines
c Source (S) and Sink (1' to be used for B-O algorithm
C

c assumed that all cargo generation nodes will be the first
c nodes I -NUMCAR in the network (this is the way 'netinake.?
c generates them from cargo.dat and newsched~dat)
* THE FOLLOWING LOOP DESIGNATES A UNIQUE FILENAME TO EACH ITERATION

TEMP=171ER
EXT='.c'
DO 451 1=2,0,-l1

RATIOAINT(TEMP/(10**I))
TEMP=TEMP-RA~O*(l0*I)
POS(I+ 1)=CHAR(48+RATIO)

451 CONTINUE
NS=POS(3y//POS(2)//POS(l)
MCNAM--'cflow'//NSI/EXT
OPEN(UNIT=5,FILE=MCNAM,STATUS='UNKNOWN,FORM='FORMATrED')
WRITE(5M<,)<«««««««<< CARGFLO.OUT >>)»»»»»»>>'
WRITE(5,*)'
GO TO (420,422,424,426), CARCRI

420 WRITE(S,*)'Flow sequence based on order in carg- dat'
GOTO 428

422 WRITE5,*)'Flow sequence based on arrival time'
GOTO 428

424 WRITE(5,)'Flow sequence based on commodity quantity'
GOTO 428

426 W~rIT5 ,*'F~ow squecebased onO-D disance'

73

GOTO 428
428 WR1TE(5,*)'

WRIE,*()' Total number of cargo nods:,NUMCAR
WR.ITE(S,*Y '

C sorting routine follows to sort cargo nodes based on either
c arrival time, quantity, or o-d distance
c actual nodes won't be sorted within the network,
c CARGPT army will be used to sequence
C selection criteria is user-specified by CARCRI

DO 4291 I=,NUMCAR
SORT(I)=0
CARGPTQ)=I

429 CONTINUE
IF (CARCRI.EQ.0) GOTO 440
DO 430 I= LNUMCAR

BST=INF
WST=0.0
DO 432 J=I,NUMCAR
GO TO (440,434,436,438), CARCRI

434 IF ((NODES(J,2).LE.BST).AND.(SORT(J).EQ.0)) THEN
K=J
BST=NODES(J,2)

ENDIF
GOTO 432

436 IF ((NODES(J,3).GFWST).AND.(SORT(J).EQ.0)) THEN
K=J
WST=NODES(J,3)

ENDIF
GOTO 432

C O-D distance sorter not currently coded
438 GOTX) 432
432 CONTINUE

SORT(K)= 1
CARGPT(I)=K

430 CONTINUE
c end of sorting, begin flowing commodities
440 DO 409 Q= INUMCAR

S=CARGPT(Q)
APOE=NODIKO(S,l)
APOD=NODIKO(S,2)
TARGET=NODES(S,3)

c following loop scans network to find correct sink
T=-I

DO 410 R=N-NUMSNK+IN
IF (NODIKO(R, I).EQ.APOD) THEN

T=R
ENDIF

410 CONTINUE
WRITE(5,*)'
WRITE(5,*)'
WRITE(5,*)' Origin-Destination ICAOs: ',APOE,'-',APOD
WRITE(5,*)' Arrival time:',NODES(S,2): Quantity:',TARGET

74

WRITE(S,)' Cargo node (uoiuc):',S,' Sink nodc:',T
C *** CARGFLO MAIN PROGRAM FOLLOWS

COMCOST=0.0
CURREN=0
STPATH=0

S MAIN INITLAJLIZATION OVER Os*
470 CALL DIJKSTRA(STSTPATH"LTRN)

WRITE5,*YI
IF (STPATH.GT.0) THEN

c compirss path prior to proccuing
CALL COMPRESS(STSTPATHLOTRN)

C COMPRESS MAY CHANGE THE NUMBER OF TRANSSHIPMENTS
IF (LOTRN.GT.MLAXTRN GOTO 479

C STORE LOTRN INTO TRNDIS ARRAY
TRNDIS(LOTR.N+ l)=TRN'DIS(LOTRN+ 1)+ 1
DELTA=INF
I=T

475 IF(I.EQ.S) GOTO 480
J=I
I=PRED(J)

C LOOP NEEDED HERE TO FIND CAPA(I,J)
CAPALJ- 1.0
FLOWIJ=- 1.0
Do 477 K=POINT(I,1),POINT(I,2)
IF (INT(COSCAP(K,1)).EQ.J) THEN
CAPAIJ=COSCAP(K,6)
FLOWIJ=COSCAP(K,7)
GOTO 478

ENDIF
477 CONTINUE

WRfl'E(*)'»»> ERROR, CAPAIJ NOT FOUND.-
478 IF (CAPAIJ.GT.0.0) THEN

D-CAPAIJ-FLOWIJ
IF (D.LT.DELTA) DELTA=D

ENDIF
GOTO 475

480 IF ((CURREN+DELTA).GT.TARGEr) THEN
DELTA=TARGET-CURREN

ENDIF
I=T

485 IF(I.EQ.S) GOTO 490
1=1
I=PRED(J)
CAPAU. -1.0
FLOWIJ=- 1.0

DO 486 K=POINT(I,l),POINT(I,2)
IF (INT(COSCAP(K,)).EQ.J) THEN

CAPAIJ=COSCAP(K,6)
FLOWIJ=COSCAP(K,7)
ARCTMP=-K
GOTO 488
ENDIF

75

486 CONTINUE
WRTE(*)'»»> ERROR, CAPAIJ NOT FOUND.-

488 IF (CAPAJIJGT.0. 0) THEN
FLOWIJ=FLO)WIJ+DELTA
COSCAP(ARCTMP,7)=FLOWIJ

C FLOATING POINT ARITHMETIC TOLERANCE BUILT IN TO CATCH
C ANY SMALL DEVIATIONS HERE

IF(ABS(CAPAIJ-FLOWIJ)LE.EPSILON) COSCAP(ARCTMP,5)=INF
ENDIF
GOTO 485

490 CURREN=CURREN+DELTA
*** THIS SECTION WRITES OUT THE PATH A COMMODITY TAKES

CURNODE=T
FLPATH(1)=T
FLNUM= 1

DO 495 1=2,N
FLPATHW=)-PRED(CURNODE)
IF(PRED(CURNODE).EQ.-1.0) GOTO 496
CURNODE=PRED(CURNODE)
FLNUM=FLNLJM+ 1

495 CONTINUE
496 IF(FLNUM.NE.) THEN

WRITE(5,¶*' TIS: ,DISTM,' FLOW: ',DELTA
WRrTE5,*y NO. OF TRANSSHIPMENTS: ,LOTRN
WRITE(5,y) ICAO MSN NO. TIME NODE NUMBER'
'V~rM5I'~,*)I ====== ==
DO 500, I=FLNUM,1,-l
J=FLPATHQl)
WRITE(,502)NODIKO(JI),NODES(J,4),NODES(J,2)4J

502 FORMAT(2XA4,3XF5.O,5XF5.2,5X,16)
500 CONTINUE

WRrrE(,*)
WRrTE4,*)DISTMLOTRN,DELTA,FLNUM,(FLPATHQl),I=FLNUM,1 ,-1)

COMCOST=COMCOST+DIST(T)DELTA
ENDIF

C STORE FLOW INTO TISDIS ARRAY
TISDIS(INT(DISTm)+ 1)=TISDISQINT(DISTM)+ 1)+DELTA

ENDIF
***STPATH
IF ((CURREN.LT.TARGET).AND.(STPATH.GT.0)) GOTO 470

C FOLLOWING COMPUTES TOTAL SYSTEM COST (I.E. DAY-TONS!)
C COMCOST IS THE COST FOR THE GIVEN COMMODITY FLOW
479 T*OTAL=TOTAL+COMCOST

TOTFLO=TOTFLO+CURREN
UNFLOW=IJNFLOW+(TARGET-CURREN)
END COMMODITY FLOW

C ADD OUTPUT FOR TOTAL CHANNEL SYSTEM CARGO UNFLO WED
WRITE(5,0)
WRrTE5,*)' FLOWED CARGO FOR THIS COMMODITY:',CURREN
WRfTE(5,)' UNFLOWED CARGO FOR THIS COMMODITY:',TARGET-CIJRREN
WnffE45,*)' COST FOR FLOW OF THIS COMMODITY:',COMCOST
WRITE(5,0)

76

WRIrh(5,*)lOTAL CHANNEL SYSTEM CARGO FLOWED:',TOTFLO
WRITE(5,*)TrOTAL CHANNEL SYSTEM CARGO NOT FLOWED:',UNFLOW
WRITE(5,*)TOTAL CHANNEL SYSTEM COST: ,TOTAL

409 CONTINUE
c 409 continue loop for next commodity
C WRITE OUT TRANSSHIPMENT DISTRIBUTION

WRrTE5,O)
WRITE(5,*)
WRITF5S,)
WRITE5,*) TRANSSHIPMENT DISTRIBUTION'
WRrME5,*)
WRITE(S,)' NUMBER OCCURENCES!
WRrTE5,*Y- --
WIUTE(7,*)
WRIT(,")

WRITE(7,*)
WRTE(,*)' TRANSSHIPMENT DISTRIBUTION'
WRIT(,*)
WfWRT(,*) NUMBER OCCURENCES'
'W'RITE(7,*)
DO 503 1=1,60
IF (TRNDIS(I).GT.0) THEN
WRITE5,*)(l- 1),' ',TRNDIS(I)
WRITE(7,*)XI- 1),' ',TRNDIS(I)
ENDIF

503 CONTINUE
C WRITE OUT T.I.S DISTRIBUTION

WRrTE5,*)
WRrTE5,*)
WRrTE5,*)
WRITE(5,*)I T.I.S. DISTRIBUTION'
WRfTE(5,*)
WRITE(5,*) DAYS TONS'
WPJTE(,*)' - ---
WRITw,*)
WRITE(,*)
WRITE(,*)
WRIT(,*)' T.I.S. DISTRIBUTION'
WRrrE(,*)
WRITE(7,*)' DAYS TONS'

DO 504 1=1,60
IF MTSDIS(I).GT.0) THEN
WRITE(5,0)(1-),-I,',TISDISQl)
wRITE(,*)(-),-I, ,TIsDIS(l)
ENDIF

504 CONTINUE
CLOSE(4)
CLOSE(S)
CLOSE(1 1)
RETUJRN
END

77

c DIJKSTRAS SHORTEST PATH ALGORITHM FOR
c FLOW APPLICATIONS IN THE CHANNEL CARGO SYSTEM
c

c MODIFIED TO FIND ALTERNATE PATHS OF THE SAME LENGTH
C AND TO CHOOSE THE 'BEST USING CRITERIA OF TRANSSHIPMENT,
C OR LEAST TIME IN-AIR, OR, ETC.
C

c Method derived from "Discrete Optimization Algorithms with Pascal
c programs" (Syslo, Deo, Kowalik)
c
c N is the number of nodes.
c S is the source node
c T is the sink node
c INF is "infinity"
c PATH is 1-0 variable that determines if there is a path from the source to
c the sink "I" = true and "0" = false
c DIST is the array containing the shortest distance from source to nodes
c that have been permanently labeled.
c PRED is the army a shortest path from source (node S) can be traced.
c FINAL is the array for each node determining if it has been labeled permanent
c where "I" = permanent and "0" = temporary.
c
C TIS IS TIME-IN-SYSTEM FOR A PATH
C TIA IS TIME-IN-AIR FOR A PATH
C LOWTIA IS LOWEST TIME-IN-AIR FOR PATHS
C DELTA IS MINIMUM ARC CAPACITY ALONG A PATH
C HIDELT IS HIGHEST OVERALL PATH CAPACITY
C MAXTRN IS MAXIMUM NUMBER OF TRANSSHIPMENTS ALLOWED
C NUMTRN IS CURRENT PATH NUMBER OF TRANSSHIPMENTS
C MAXALT IS MAXIMUM NUMBER OF ALT PATHS ALLOWED
C NUMALT IS CURRENT NUMBER OF ALT PATHS FOUND
C
C CURRENT LOGIC WILL:
C 1) NUMALT.LT.MAXALT, FIND AN ALTERNATE PATH.
C 2) DETERMINE ITS NUMBER OF TRANSSHIPMENTS (NUMTRN),
C DELTA, AND TIA AS WELL.
C 3) IF NUMTRN.GT.MAXTRN GOTO 1.
C 4) IF DELTA.LT.HIDELT GOTO I
C 5) IF DELTA.EQ.HIDELT, RESORT TO TIME-IN-AIR AS
C CHOOSE CRITERIA. LOWEST TIA SELECTED,GOTO I
C 6) IF DELTA.GT.HIDELT, STORE NEW PATHjHIDELT, GOTO I

SUBROUTINE DlJKSTRA(S,T,PATHLOTRN)

INTEGER N,S,TPATH,FINAL(4999),RECENTY
INTEGER NUMCARNUMSNKNUMMSNITER
INTEGER POINT(4999,2)
INTEGER ARCNUMNUMLBL,ENDNODNUMBAK
INTEGER FLPATH(4999),FLNUM,CURNODE
INTEGER 1,L,M,I2
INTEGER BSTPTH(4999),BSTNUM

78

INTEGER NUMT~RNLOTRN
INTEGER NUMALTOFIRSTPRIOR
INTEGER MAXUTMAXALTMAXTRNCARCRJPASSESSORCRI
INTEGER TRNDIS(60),TRtNS(500)

REAL DIST(4999).PRED(4999),INFLABEL
REAL COSCAP(89999,8),NODES(4999,4),TNODES(4999,4)
REAL TISTIA
REAL DELTAHDELTBSTDLT
REAL COST
REAL EPSILONTISDIS(60),TIMEPS

CHARACTER*4 NODIKO(4999,2)

COMMON /CONSTSI N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /PARAMS/ MAWUTMAXALTMAXTRNCARCR1,PASSES,SORCRITMEPS

C MAXALT AND MAXTRN AFFECT ALT PATHS AND ARE USER-SPECIFIED
LOTR(N=99
NUMALT=O
NUMLBL=0
HIDELTO0.O
BSTDLT=0.0
DO 515 I= 1,N

DIST(I)=INF
PRED(I)=- 1.0
FINAL(I)=0

515 CONTINUE
DIST(S)=0O.0
F1NAL(S)= 1
PATH=O
RECENT=S

cDijkstra looks at forward star nodes
c from recent instead of all nodes when
c using the linked adjacency list
588 DO 520 I=POINT(RECENT,1),POINT(RECENT,2)

IF (I.LT.0) GOTO 525
IF (COSCAP(I,5).LT.INF) THEN
IF (FINAL(INT(COSCAP(I,1))).EQ.0) THEN

LABEL=DIST(RECENT)+COSCAPQ1,5)
IF(LABELLT.DIST(INT(COSCAP(I, I)))) THEN

DISI (INT(COSCAP(I,l)))=LABEL
PRED(INT(COSCAP(I. 1)))=RECENT

ENDIF
ENDIF

ENDIF
520 CONTINUE
525 TEMP=INF
C CHANGED UPDATE SCAN TO EXCLUDE CARGO NODES, THEY CANNOT
C BE LABELED BECAUSE NO ARCS END AT THEM

79

DO 530 U=NUMCAR+ I,N
IF (FINAL(U).EQ.O) THEN
IF (DIST(U).LT.TEMP) THEN

Y=U
TEMP=DIST(U)

ENDIF
ENDIF

530 CONTINUE
IF(TEMP.LT.NF) THEN
FINALY)= I
RECENT=Y
NUMLBL=NUMLBL+1

ELSE
PATH=0
FINAL(m)=I
GOTO 599

ENDIF
IF(FINAL(l).LT. 1) THEN

GOTO 588
ELSE

PATH=1
ENDIF

C ALTERNATE PATHS LOGIC FOLLOWS (NORMAL DIJKSTRA ENDS HERE)
C TAKE THE SELECTED PATH AND TRACE BACK IN
C THE PREDECESSOR ARRAY, ALL OF THESE NODES WILL BE USED AS
C END VERTICES FOR A SCAN OF ALL PERMANENTLY LABELLED NODES,
C IF AN ARC EXISTS BETWEEN A PERMANENTLY LABELLED NODE AND
C THE PREDECESSOR NODE, AN ALTERNATE PATH IS FOUND
C FILE 'alLout' WILL CONTAIN INFO ON THE SEARCH IN FORMAT
C VERY SIMILAR TO 'paft.out':
c TISrIME-IN-AIR/FLOW CAPACITY/# TRANSSHIPMENTS# NODES IN PATH/PATH
C VARIABLE 'MAXALP USER-SET TO LIMIT NUMBER OF ALTERNATE PATHS FOUND
C VARIABLE 'MAXTRN" USER-SET TO LIMIT NUMBER OF TRANSSHIPMENTS
C ALGORITHM WILL FIND/EVALUATE PATHS UNTIL MAXALT REACHED, THEN
C THE MOST ADVANTAGEOUS PATH WILL BE SELECTED BASED ON USER
C SELECTED CRITERIA.

NUMBAK=0
FIRST=l
I=T

555 IF ((I.EQ.S).OR.(NUMALT.GE.MAXALT)) GOTO 599
J=I
I=PRED(J)
IF (FIRST.EQ.1) GOTO 570

575 NUMBAK=NUMBAK+ 1
DO 540 K=NUMCAR+ 1,N-NUMSNK

" ONLY CHECK PERMANENTLY LABELED NODES
IF (FINAL(K).LT.1) GOTO 540

* ANY NODE THAT FOLLOWS K IN THE INITIAL PATH
* (CLOSER TO THE SINK) CANNOT BE USED, OR A
* CYCLE WOULD BE INTRODUCED INTO THE PRED ARRAY.
* (THIS WILL ONLY HAPPEN WITH 0 COST ARCS)

12=T

80

DO 560 M= 1,NUMBAK+ I
12=PRED(12)
IF (K.EQ.12) GOTO 540

560 CONTINUE
CHECK TO SEE IF ANY ARCS ORIGINATE AT NODE K

IF (POINT(KI).LT.0) GOTO 540
DO 545 L=POINT(K,I),POINT(K,2)
ENDNOD=INT(COSCAP(L,I))

c nccd to chock if this arc has infinite cost
IF ((ENDNOD.EQ.I).AND.(COSCAP(I).LT.INF)) THEN

C AN ALTERNATE PATH HAS BEEN FOUND:
NUMALT=NUMALT+ l

570 NUMTRN=0
PRIOR=0
DELTA=INF
TIS=DIST(T)
TIA=0.0

C WRITE(*,*)' ALT PATH FOUND:'
C ALTERNATE PATHS WILL BE A 'SPLICE' OF WHAT WE HAVE JUST FOUND
C AND THE SELECTED PATH, BASED ON HOW FAR WE HAVE TRACED BACK

FLPATH(1)=T
CURNODE=T
FLNUM= I

C THE 557 LOOP TRACES BACK ALONG THE SELECTED PATH
DO 557 M=2,N
IF ((NLEQ.(NUMBAK+2)).AND.(FIRST.NE. 1)) THEN
FLPATH(M)=K
ELSE
FLPATH(M)=PRED(CURNODE)
ENDIF

C FOLLOWING IF-THEN DETERMINES LAST NODE IN PATH
C THE PRIOR.EQ.0 IF-THEN WAS ADDED IN AN ATTEMPT TO
C TRACK TRANSSHIPMENTS PROPERLY. W/O, THE LOOP COUNTS
C AN ADDITIONAL FAKE TRANSSHIPMENT FROM SOURCE TO ORIGIN
C AIRBASE IF THE PATH GOES THROUGH THE TRANSSHIPMENT PATH

IF(PRED(CURNODE).EQ.- 1.0) THEN
IF (PRIOR.EQ.0) THEN
NUMTRN=NUMTRN- i
ENDIF
GOTO 565
ENDIF

C THE 558 LOOP ACCESSES ARC INFORMATION FROM COSCAP
COST=- 1.0
CAPAIJ=. 1.0
FLOWIJ=- 1.0
DO 558 O=POINT(FLPATH(M),I),POINT(FLPATH(M),2)
IF (INT(COSCAP(O,1)).EQ.CURNODE) THEN
COST=COSCAP(O,5)
CAPAIJ=COSCAP(O,6)
FLOWIJ=COSCAP(0,7)
GOTO 559
ENDIF

81

558 CONTINUE
WRITE(*,*)>>> ERROR, CAPAUJ NOT FOUND (DIJKSTRAV

C CAPAIJ IS COMPARED TO PREVIOUS DELTA, MIN STORED
559 IF (CAPAIJ.GT.O.O) THEN

D=CAPAIJ-FLOWIJ
IF (D. LT. DELTA) DELTA=D

ENDIF
C CURRENT ARC IS CHECKED TO SEE IF IT TRANSSHIPS
C LOGIC MODIFIED TO NOT COUNT CONSECUTIVE TRANSSHIPMENTS
C MORE THAN ONCE, PREVIOUS METHOD COUNTED
C EACH CONSECUTIVE ARC IN THE TRANSSHIPMENT PATH
C
C THE VARIABLET'RIOR' WILL BE THE SWITCH TO PREVENT
C NUMTRN FROM BEING INCREMENTED
C
C PRIOR='O' PREVIOUS ARC TRANSSHIPS
C PRIOR='1' PREVIOUS ARC DOESNT TRANSSHIP

IF (NODES(FLPATH(M),1).GT.O.O) THEN
IF ((NODES(FLPATH(M),1).EQ.3.O).AND.

C (NODES(CURNODE,1).NE.O.O)) THEN
NIJITRN=NIJMTRN+PRIOR
PRIOR=O
GOT0 561
ELSE
IF ((CURNODFENE.(FLPATH(M)+ 1)).AND.

C (NODES(CURNODE,1).NEO0.O)) THEN
NUMTrRN=NUMTlRN+PRIOR
PRIOR=O
GOTO0561
ENDIF
ENDIF

C TIME-IN-AIR IS CALCULATED
IF ((CURNODE.EQ.(FLPATH(M)+ 1)).AND.

C (NODES(CURNODE,1).NE.O.O)) THEN
IF (NODIKO(CURNODE,1)NENODIKO(FLPATH(M), 1)) THEN
TIA=TIA+COST
PRIOR= 1
ENDIF
ENDIF

ENDIF
561 IF ((NtEQ.(NUMBAK+2)).AND.(FIRST.NE.1)) THEN

CURNODE=K
El SE
CURNODE=PRED(CURNODE)
ENDIF
FLNUM=FLNUM+ I

557 CONTINUE
565 IF(FLNUM.NE.1I) THEN

WRrTEll1,*)TIS,TIA,DELTA,NIJMTRN,FLNUM,(FLPATH(M),M=FLNUM,1 ,.1)
ENDIF

C BEST PATH LOGIC FOLLOWS
C STORE CURRENT BEST INTO BUFFER ARRAY BSTPTHO,BSTNUM,BSTDLT

82

IF (DELTA.EQ.0.0) GOTO 547
IF (NUMTRN.LT.LOTRN) GOTO 578
IF ((NUMTRN.EQ.LOTRN).AND.(DELTAGT.HIDELT)) GOTO 578
GOTO 547

578 LOTRN=NUMrTRN
HIDELT=DELTA
BSTDLT=DELTA
BSTNUM=FLNUM
DO 580 M=BSTNUMl,-I

BSTPTH(M)=FLPATH(M)
580 CONTINUE

c BSTPTH(I)=T
ENDIF

547 IF (FIRST.EQ. 1) THEN
FIRST=0
GOTO 575

ENIDIF
545 CONTINUE
540 CONTINUE
C JUMP UP TO FIND ANOTHER ALTERNATE PATH

GOTO 555
C THE BEST PATH INFO NEEDS TO BE LOADED INTO PRED,DELTA:
599 IF (NUMALT.GT.0) THEN

DO 585 M= 1,BSTNUM- I
PRED(BSTPTH(M))=BSTPTH(M+ I)

585 CONTINUE
PRED(S)=- 1.0

ENDIF
writc(I 1,*)
writc(1 I,*)

C IF THE BEST PATH VIOLATES THE SPECIFIED MAXTRN, SET PATH=0
IF (LOTRN.GT.MAXTRN) PATH=O

RETURN
END

"* SUBROUTINE COMPRESS
"* MODIFIED TO BYPASS THE OUT-AND-BACK PHENOMENON, AS WELL
"* AS RECOUNT NUMBER OF TRANSSHIPMENTS IN THE COMPRESSED PATH
"* SUBROUTINE COMPRESS TAKES A PATH DETERMINED FROM
"* DIJKSTRA AND SHORTENS IT TO A MINIMUM NUMBER OF NODES.
"* IT DELETES ANY UNNECESSARY NODES SUCH AS INTERMEDIATE

"* TRANSSHIPMENT NODES. THE SUBROUTINE SHOULD BE CALLED
"* FOR ALL PATHS THAT ENTER THE FLOW PATTERN.
"* THE SUBROUTINE ADDS ARCS TO COSCAP AND ADJUSTS THE POINT
"* ARRAY IF COMPRESSION REQUIRES NONEXISTING ARCS.

SUBROUTINE COMPRESS(S,TPATHLOTRN)

INTEGER NS,TPATH
fNTEGER NUMCARNUMSNKJNUMMSNITER
INTEGER POINT(4999,2)
INTEGER ARCNUM,LOTRNK

83

INTEGER TRNDIS(60),TRNS(5 00)
INTEGER TRNNUM,HEADTAIL
INTEGER HADDARCARIfRNNUMTRN
REAL DIST(4999),PRED(4999),INF
REAL COSCAP(89999,8),NODES(4999,4),TNODES(4999A4)
REAL EPSILONTISDIS(60)

CHARACTER04 NODIKO(4999,2)
CHARACTER*4 CURIKOPRIIKO

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMsN, ITEREPILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRIJDIS, TRNS, TISDIS

*CHECK CONDITIONS TO JUSTIFY RUNNING COMPRESS
IF (PATH.EQ.0) THEN
WRITE(,)' ERROR, COMPRESS CALLED, STPATH=0'
GOTO 3120
ENDIF

*ADDITIONAL LOOP ADDED TO CATCH OUT-AND-BACKS
*RETRN IS A SWITCH TO INDICATE IF ANY ARCS HAVE BEEN ADDED
*IF THEY HAVE, RETRN SET To 1, AND THE NUMBER OF TRANSSHIPMENTS
*MUST BE RETALLIED.

RETRN=0
H=T

3070 H=PRED(H)
IF ((PRED(H).EQ.S).OR.(H.EQ.S)) GOTO 3080
I=H
HEAD=I
PRIIKO=NODIKOQ1,1)
TRNNU4m=O
ADDARC=0

3000 IF(I.EQ.S) GOTO 3010
IF(I.EQ.-I) THEN

WRITE*,*)IERROR: I = -V! (COMPRESS)'
WRfflW(,*)IPRD ARRAY INCORRECT'

ENDIF
3=1
I=PRED(J)
CURIKO=NODIKOQl,l)
TRNNUM=TRNNUM+1
IF ((CURIKO.EQ.PRIIKO).AND.(rR1NNUM.GE.2)) THEN
ADDARC= 1
RET]RN=1
TAIL=I
PRED(HEAD)=TAIL

ENDIF
*ERROR CHECKER:

IF (TRNNUM.GT.N) THEN
WRITE(*,)' INFINITE LOOP IN COMPRESS, ABORT'
WRITE(,*)' S--',S,' T=',T
VXITE(,*y I=',I,' J=',J

84

STOP
ENDIF
GOTO 3000

"* IF ADDARC=1, AN ARC HAS BEEN INTRODUCED,
"* NEED TO SCAN TO SEE IF IT EXISTS IN COSCAP,
"* IF IT DOESN'T, INSERT AND UPDATE COSCAPPOINT
3010 IF (ADDARC.EQ.1) THEN
*SEARCH FOR THE ARC IN COSCAP

DO 3020 K=POR F(AIL 1),POINT(TAIL,2)
IF (INT(COSCAP(K,1)).EQ.HEAD) GOTO 3070

3020 CONTINUE
*SHIFT ALL FOLLOWING ARCS ONE DOWN IN COSCAP

ARCNUM=ARCNUM+ 1
DO 3040 K=ARCNUMPOINT(TAIL,2)+2,-1

COSCAP(K,)=COSCAP(K- 1,1)
COSCAP(K,2)=COSCAP(K- 1,2)
COSCAP(K,3)=COSCAP(K- 1,3)
COSCAP(K,4)=COSCAP(K-1,4)
COSCAP(K,)=COSCAP(K-1,5)
COSCAP(K,6)=COSCAP(K-1,6)
COSCAP(K,7)=COSCAP(K- 1,7)
COSCAP(K,8)=COSCAP(K. 1,8)

3040 CONTINUE
"* INSTALL NEW ARC INTO COSCAP

K=POINT(TAIL,2)4-
COSCAP(K,1)=HEAD
COSCAP(K,2y=NODES(HEAD,2)-NODES(AIL,2)
COSCAP(K,3)=INF
COSCAPMK4)=0.0
COSCAP(K,5)=COSCAP(K,2)
COSCAP(K,6)=COSCAP(K,3)
COSCAP(K,7)=COSCAP(K,4)
COSCAP(K,8)=NODES(HEADA4)

"* UPDATE ENDPOINTER FOR NODE TAIL
POINT(TAII42)=K

*SHIUFT ALL SUBSEQUENT NODE POINTERS BY 1 (EXCEPT -1'S)

DO 3060 K=TAIL+1,N
IF (POINT(K,1).GT.0) THEN
POINT(K,1)=POINT(K,1)+l
POINT(K,2)=POINT(K,2)+ I

ENDIF
3060 CONTINUE

ENDIF
*ENDIF FOR (ADDARC.EQ. 1)
*LOOP BACK TO CONTINUE CHECKING FOR OUT-AND-BACKS

GOTO 3070
*ADD CODE TO COUNT TRANSSHIPMENTS OF COMIPRESSED PATH

3080 IF (RETRN.EQ.0) GOTO 3120
NUMTRN=0
I=PRED(TI)

3090 IF(PRED(I).EQ.S) GOTO 3100
J=I

85

I=PRED(J)
MSN NUMBER DIFFERENCE CONSIDERED A TRANSSHIPMENT
IF (I.NE(J-1)) THEN
NUMTrRN=NUMATRN+ I
ENDIF
GOTO 3090

3100 LOTRN=NUMTR7N
3120 RETURN

END

"* SUBROUTINE POSTPROC PERFORMS POST-PROCESSING ON THE OUTPUT FROM
"* SUBROUTINE CARGFLO
"* IT DETERMINES THE UTILIZATION OF THE LEGS ALONG EACH MISSION,
"* REPORTING THIS UTILIZATION AS A PERCENTAGE OF TOTAL CAPACITY USED.

SUBROUTINE POSTPROC 0

INTEGER NPATHNUMPATH(500,75)~NUMCAR
INTEGER NUMSNK,MSNNODNUMNODE(4999),BEGMSN(1000),ENDMSN(1 000)
INTEGER FLONUM(4999),NUM(4999),NUMSN
INTEGER ITERTEMP,POINT(4999,2),ARCNUM
INTEGER MSNORD(1000),TMPORDORDER
INTEGER TRNDIS(60),TRNS(500),SORCRITMPORD,UPPER

REAL COSCAP(89999,8),INFPRED(4999),DIST(4999),UTIL
REAL NODES(4999,A),TNODES(4999A),ACCAP(I 000),RATIO
REAL PTHFLO(500),MAXUTE(1 000),MAXUTL
REAL EPSILONTISDIS(60)
REAL MSNCAP,TIM[EPS, TMUWITE

CHARACTER PPNAM*9NS*3,EXTr2,POS(3)* 1,NODIKO(4999,2)*4
CHARACTER AC(1000)*4,MSNCOD(1000)* I

COMMON /CONST'S/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITEREPSILON
COMMON /PARAM[S/ MAXITMAXALTMAXTRNCARCRIPASSESSORCRITIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDM[SN, NUM, PATH,

C FLONUM, PATHNUM, PTHFLO, MSNCOD
COMMON /ORD/ MSNORD

OPEN(UNrlT=2,FILE='nwhed.dat!,STATUS='OLD',FORM='FORMA1TED')
"* THE FOLLOWING SECTION DETERM[INES THE NODE NUMBERS ASSOCIATED WITH A
"* PARTICULAR MISSION. BEGMSN(I) IS THE FIRST NODE ON MISSION I AND
"* ENDMSN(I) IS THE FINAL NODE.

MSNNOD=-NUMCAR+I
READ(2,*)NUMMSN
DO 1000 I=ljNUMMSN

READ(2,*)NIJMNODE(I),AC(I),ACCAP(I),MSNCOD(I)
BEGMSN(I)=-MSNNOD
ENDMSN(I)=BEGMSN(I)+NUMNODE(I)- 1
NUM(I)=NUMNODE(I)

86

DO 1010 J=1,NUMNODE(I)
READ(2,O)

1010 CONTINUE
MSNNOD=MSNNOD+NUMNODE(I)

1000 CONTINUE
THE FOLLOWING LOOP DESIGNATES A UNIQUE FILENAME TO EACH ITERATION'S

*POST-PROCESSING.

TEMIP--rER
EXT='.c'
DO 1020 1=2,0,-i
RATIO=INT(rEMPI(0**I))
TEMP=TEMP-RATIO*(I 0*I)
PO5(1+ 1)=CHAR(48+RATIO)

1020 CONTINUE
NS=POS(3)//POS(2)t/POS(l)
PPNAM='post'//NS//EXT
OPEN(UNrrT=3,FLE=PPNAM,STATUS='UNKNOWN',FORM='FORMATrED')

"* BEGIN POST-PROCESSING
"* WRITE HEADER

WRITE(3,*)'UTILIZATION OF MISSIONS'
WRITE(3,*)
WRITE(3,*)'IJTILIZATION EQUALS THE PERCENTAGE OF A MISSION LEG'
WRITE3,*)'CAPACITY THAT IS USED.'
WRrME3,*)
WRITE(3,)'ICAO UTIL FLOW'

WPJTE(3,*)-

DO 10301I= 1,NUMSN
MAXUTEQI)=0.0
MSNCAP=-0.0

WRITE(3,1040)I,ACQI),ACCAPQI)
1040 FORMAT('MISSION ',13,' (ACFT = ',A4,', CAPACITY-'

c F4 1,' TONS)')
WRITE(3,1050)NODIKO(BEGMSN(I),l)

1050 FORMAT(A4,2X,'--- --. ')
DO 1060 J=BEGMSN(I)+1,ENDMSN(I)

IF(POINT(J.1,1).EQ.. 1) THEN
WRITE*,*)'BEFORE 1070, -i'

ENDIF
DO 1070 K=POINT(J-1, 1),POINT(J- 1,2)

IF(INT(COSCAP(K,I)).EQ.J) THEN
IF(NODIKO(J- 1,1)N.NNODIKO(J, 1)) THEN

UTIL=COSCAP(K7YCOSCAP(K,3)
MAXUr4)=MAXUTQ)+COSCAP(K,2)*COSCAP(K~,7)
MSNCAP=MSNCAP+(COSCAP(K,2)*COSCAP(K,3))

WRITE(3,1080)NODIKO(J,1),UTIL,COSCAP(K,7)
1080 FORMAT(A4,2XF4.2,2X,F6.2)

ELSE
GOTO 1070

ENDIF
ENDIF

1070 CONTINUE

87

1060 CONTINUE
MAXUTE(I)=MAXUTE(IYMSNCAP
WRITE(3,*YOVERALL UTILIZATION ON THIS MISSION: ',MAXUTE(l)
IF(MAXUTEQGT. 1.0) THEN

WRIT(*,)'WARNING. MISSION ',I.' IS OVERUTILIZED'
ENDIF
WRITE(3,*)

1030 CONTINUE
* THIS SECTION ORDERS THE MISSION SET ACCORDING TO USER PREFERENCE

DO 1090 I=INUMMSN
MSNORD(1)=I

1090 CONTINUE
IF(SORCRI.EQ.1) GOTO 1105
IF(SORCRI.EQ.2) THEN

* THIS SECTION SORTS IN REVERSE GIVEN ORDER
DO 1095 I=I,NUMMSN

MSNORD(I)=NUMMSN+ 1.-
1095 CONTINUE

GOTO 1105
ENDIF
IF(SORCRI.GT.2) THEN

* THIS SECTION SORTS ON ASCENDING UTILIZATION
DO 1100 I=INUMMSN-I

MAXUTL=MAXUTE(I)
ORDER=I
DO 1110 J=I+I,NUMMSN

IF(MAXUTE(J).GT.MAXUTL) THEN
MAXUTL=MAXUTE(J)
ORDER=J

ENDIF
1110 CONTINUE
* SWITCH POSITION I AND POSITION ORDER IN MSNORD ARRAY

TMPUTE=MAXUTEQI)
MAXUTE(l)=MAXUTE(ORDER)
MAXUTE(ORDER)=TMPUTE
TMPORD=MSNORD(1)
MSNORD(Q)=MSNORD(ORDER)
MSNORD(ORDER)=TMPORD

1100 CONTINUE
ENDIF
IF(SORCRI.EQ.4) THEN

"* THIS SECTION SORTS ON DESCENDING UTILIZATION (REVERSES THE ORDER
"* DETERMINED BY THE ABOVE 1100 LOOP
"* SINCE WE ARE DOING A PAIRWISE SWITCH, WE NEED ONLY GO THROUGH THE
"* FIRST HALF OF THE MISSIONS. WE MUST DETERMINE IF THE NUMBER OF
"* MISSIONS IS ODD OR EVEN.

IF((NUMMSN/2.).GT.(INT(NUMMSN/2.))) THEN
"* ODD NUMBER

UPPER=INT(NUMMSN/2.)+1
ELSE

UPPER=INT(NUMMSN/2.)
ENDIF

88

DO 1096 I=IUPPER
TMPORD=MSNORD(1)
MSNORD(1)=MSNORD(NUMMSN-I+ 1)
MSNORD(NUMMSN-I+ 1)=TMPORD

1096 CONTINUE
ENDIF

* THE MISSION SET IS NOW SORTED ACCORDING TO USER PREFERENCE
1105 CLOSE(2)

CLOSE3)
RETURN
END

"* THIS SUBROUTINE DOES SOME PRE-PROCESSING OF THE DATA FOR LATER USE
"* IN SUBROUTINE MODMSN.

SUBROUTINE PREMODO

INTEGER NUMCARNUMMSNNUMNODE(4999),BEGMSN(1000)
INTEGER ENDMSN(1000),NUM(4999),ARCNUMPOINT(4999,2)
INTEGER PATHNUMPATH(500,75),FLONUM(4999)
INTEGER TRNDIS(60),TRNS(500)

REAL COSCAP(89999,8),ACCAP(1000),NODES(4999,4),PRED(4999)
REAL DIST(4999),TISYSTNODES(4999,4),PTHFLO(500)
REAL EPSILON,TISDIS(60)

CHARACTER*4 AC(1000),NODIKO(4999,2),MSNCOD(1000)* 1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,
C FLONUM, PATHNUM, PTHFLO, MSNCOD

OPEN(UNIT=4,FILE='paths.out,STATUS='OLD',FORM='FORMATIED')

"* THIS SECTION READS IN AND STORES THE PATHS GENERATED BY SUBROUTINE
"* CARGFLO. IT ALSO STORES THE TIME IN SYSTEM AND FLOW FOR EACH PATH.

PATHNUM=0
DO 1120 1=1,99999999

READ(4,*,END= 130)TISYS,TRNS(I),PTHFLO(I),FLONUM(I),
C (PATH(IJ)4= 1,FLONUM(I))

PATHNUM=PATHNUM+1
1120 CONTINUE
1130 CONTINUE
* THE FOLLOWING LOOP SETS COSCAP(I,8) TO ZERO FOR ALL ARCS.

DO 1140 I=1,ARCNUM
COSCAP(I,8)=0.

1140 CONTINUE
* THIS SECTION MARKS COLUMN 8 OF COSCAP (I.E. THE MISSION THAT THE
* ARC CONNECTS TO) FOR EVERY ARC IN THE FLOW. THAT IS, ONLY THOSE
* ARCS THAT ARE ACTUALLY USED (NON-ZERO FLOW) WILL BE MARKED.

89

DO 1170 I=l,PATHNUM
DO 1180 J=IFLONUM(1)-2

DO 1190 K=POINT(PATH(QJ),I),POINT(PATH(IJ),2)
IF(INT(COSCAP(K,I)).EQ.PATH(IJ+ 1)) THEN

COSCAP(K,8)=NODES(PATH(I,J+ I),4)
ENDIF

1190 CONTINUE
1180 CONTINUE
1170 CONTINUE

THE FOLLOWING SECTION STORES THE VALUES OF THE NODES MATRIX IN THE
* TEMPORARY MATRIX TNODES.

DO 1210 I=l,N
DO 1220 J=1,4
TNODESQ,J)=NODES(,.)

1220 CONTINUE
1210 CONTINUE
* THE FOLLOWING SECTION STORES THE COSTS ASSOCIATED WITH EACH ARC IN
* THE TEMPORARY COLUMN OF THE COSCAP MATRIX.

DO 1230 1=1,ARCNUM
COSCAP(I,5)=COSCAP(1,2)

1230 CONTINUE
CLOSE(4)
RETURN
END

* SUBROUTINE MODMSN COMBINED WITH SUBROUTINE STEP3, IMPLEMENTS THE
* SCHEDULING IMPROVEMENT ALGORITHM, WHICH IS DESIGNED TO SHIFT THE
* START TIMES OF THE MISSIONS TO AN EARLIER TIME (SHIFTING TO A LATER
* TIME WILL HAVE TO BE A TOPIC OF FUTURE RESEARCH) IN AN ATTEMPT TO
* DELIVER CARGO SOONER TO THE CUSTOMER AND THUS REDUCING THE OVERALL
* COST.
* THERE ARE FOUR MAIN STEPS IN THE ALGORITHM:
* STEP 1: DETERMINATION OF THE TIME SHIFT
* STEP 2: IMPLEMENTATION OF THE TIME SHIFT
* STEP 3: MEASURING THE IMPACT OF THE TIME SHIFT

* STEP 4: REVERSAL OF THE TIME SHIFT
* SUBROUTINE MODMSN PERFORMS STEPS 1, 2, AND 4, WHILE THE APTLY NAMED
* SUBROUTINE STEP3 PERFORMS STEP 3.
* PREVIOUS WORK, SPECIFICALLY THE RAU THESIS PROJECT, SHIFTED THE
* MISSION START TIMES ONLY TO THE POINT OF MAINTAINING THE CURRENT
* FLOW. THIS ALGORITHM IMPROVES UPON THIS BY ALLOWING CARGO TO BE
* REFLOWED (FLOWED ALONG DIFFERENT PATHS) IF IT GENERATES A BETTER
* FLOW PATTERN. A BETTER FLOW PATTERN IS DEFINED AS ONE WHICH DELIVERS
"* AT LEAST AS MUCH CARGO AS BEFORE WITH A SMALLER OVERALL COST. IF
"* ANY PREVIOUSLY DELIVERED CARGO CANNOT BE DELIVERED BECAUSE OF A CHANGE
"* IN THE SCHEDULE, THE CHANGE IS NOT IMPLEMENTED.

SUBROUTINE MODMSN(MODTOT,MODFLO,TOTAL,TERCRI)

INTEGER NK,PATHNUMPATH(500,75),NUMCAR
INTEGER NUMSNK,NUMNODE(4999),BEGMSN(1000),ENDMSN(1000)
INTEGER FLONUM(4999),CHANGE,NUM(4999),NUMMSN

90

INTEGER ITERTEMPPOINT(4999,2),ARCNUM
INTEGER NUMPATHFEAS
INTEGER ARCCNT,CALLS,TFLONM(500),TPATH(500,75)
INTEGER MSNORD(1000)
INTEGER MAXITMAXALTMAXTRNCARCRIPASSESMSNPASSORCRI
INTEGER TRNDIS(60),TRNS(500),TTRNS(5 00)
INTEGER BEGARC(500),ENDARC(500),TRNCNT
INTEGER FLNUMINP kTH(75),TRANSTERCRI

REAL COSCAP(89999,8),INFTCOSTPRED(4999),DIST(4999)
REAL NODES(4999,4),TNODES(4999,4),ACCAP(1000),SHIFTRATIO
REAL COST(2),PTHFLO(500),TOTALTISDIS(60)
REAL MODTOTMODFLO,TISYS,FLOREFLOW,TIMEPSEPSILON

CHARACTER FILNAM* 10,NS*3,EXT*2,POS(3) 1,NODIKO(4999,2)*4
CHARACTER AC(1000)*4,THNAM* 10,MSNCOD(1000)* 1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITEREPSILON
COMMON /PARAMS/ MAXITLMAXALTMAXTRNCARCRI,PASSESSORCRITIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,
C FLONUM, PATHNUM, PTHFLO, MSNCOD
COMMON /CHNG/ NUMPATH, BEGARC, ENDARC
COMMON /ORD/ MSNORD

* - N IS THE NUMBER OF NODES IN THE NETWORK
* - PATHNUM IS A COUNTER FOR THE NUMBER OF PATHS USED IN THE FLOW.
* - PATH(IJ) IS A MATRIX OF NODE IDENTIFIERS. FOR EXAMPLE, PATH(1,3)
* IS THE THIRD NODE ON THE FIRST PATH.
* - NODENUM(I) IS THE NUMBER OF NODE I.
* - NUMCAR IS THE NUMBER OF CARGO GENERATION NODES.
* - NUMSNK IS THE NUMBER OF SINK NODES.
* - MSNNOD IS USED TO STORE THE NUMBER OF THE BEGINNING NODE FOR A
* PARTICULAR MISSION.
* - NUMNODE(1) IS THE NUMBER OF NODES ASSOCIATED WITH MISSION I.
* - BEGMSN(I) AND ENDMSN(I) ARE ARRAYS WHICH HOLD THE NUMBERS OF THE
* BEGINNING AND END NODES FOR MISSION I.
* - NUMMSN IS THE NUMBER OF MISSIONS ON THE NETWORK.
* - NUM(I) IS AN ARRAY WHICH HOLDS THE VALUE OF NUMNODE FOR A MISSION I.
* - FLONUM(I) IS AN ARRAY HOLDING THE NUMBER OF NODES USED ON PATH I.
* - CHANGE IS A COUNTER FOR THE NUMBER OF SCHEDULE CHANGES MADE DURING A
* SINGLE PASS THROUGH THE NETWORK.
* - NODES(I,3) IS A MATRIX CONTAINING BASE ID, TIME, AND CARGO FOR NODE I.
* - TNODES(I,3) IS A TEMPORARY MATRIX CONTAINING THE SAME INFORMATION HELD
* INNODES(I,3).
* - SHIFT IS THE CHANGE IN THE SCHEDULE.

* - INF IS INFNITIY.
* - COSCAP(I,7) IS A MATRIX CONTAINING THE END NODE, COST, AND CAPACITY
* FOR ARC I.
* - POINT(I,2) IS A MATRIX HOLDING THE ARC NUMBERS EMANATING FROM NODE I.
* - TCOST IS A TEMPORARY VARIABLE CONTAINING THE PROPOSED TIME SHIFT.

91

"* THE OUTPUT FILE 'modmm.c' HOLDS A LOG OF THE ACTIONS TAKEN BY THE
"* PROGRAM. IT IS USED PRIMARILY FOR DIAGNOSTIC PURPOSES AND MAY BE
"* TURNED OFF' WITHOUT AFFECTING THE PROGRAMMING. JUST REMEMBER TO
"* COMMENT OUT ALL THE APPROPRIATE WRITE STATEMENTS.

* BEGIN THE SCHEDULING IMPROVEMENT ALGORITHM *

* STEP 0-- INITIALIZATION

MSNPAS=0
TERCRI=0

1240 CHANGE=0
CALLS=0
MSNPAS=MSNPAS+ 1

* * **** **** ** * ********* ** S*5*5** ********** * *5** * *5****** **5*5** * *** * ** ******
* STEP 1: DETERMINATION OF THE TIME SHIFT *

* GENERAL DESCRIPTION OF STEP 1:
* FOR MISSION M FIND ALL THE TRANSSHIPMENT ARCS THAT TERMINATE ON THE
* MISSION. DETERMINE WHICH ARC WILL BE THE FIRST TO BECOME INFEASIBLE
* WITH A TIME SHIFT. WE CALL THIS ARC THE MOST CRITICAL ARC AND STORE
* ITS COST AS COST(1). ALSO FIND THE NEXT ARC WHICH WILL BECOME
* INFEASIBLE AND CALL IT THE NEXT MOST CRITICAL ARC, STORING ITS COST
* AS COST(2).
* SINCE WE CANNOT SHIFT A MISSION BY SUCH AN AMOUNT THAT WILL CAUSE ITS
* START TIME TO BE A NEGATIVE NUMBER, WE DEFINE THE TIME SHIFT TO BE

* THE MINIMUM OF (THE MISSION START TIME, COST(2)}. THIS TIME SHIFT
* REPRESENTS THE MAXIMUM AMOUNT OF TIME WE CAN SHIFT THE MISSION START
* WHILE ONLY CAUSING THE MOST CRITICAL ARC TO BECOME INFEASIBLE.

DO 1250 A=I,NUMMSN
K=MSNORD(A)

"* IF THE MISSION CODE FOR THIS MISSION IS 'F', THIS MISSION IS A FREQUENCY
"* REQUIREMENT MISSION. THIS ALGORITHM DOES NOT ALTER FREQUENCY
"* MISSIONS, SO WE MOVE ON TO THE NEXT MISSION.

IF(MSNCOD(K).EQ.'F) GOTO 1250
FEAS=0
SHIFT=INF
COST(1)=INF
ARCCNT=0

"* FIND ALL TRANSSHIPMENT ARCS THAT TERMINATE ON THE MISSION
DO 1260 L=IARCNUM

IF(INT(COSCAP(L,8)).EQ.K) THEN
*IF(I)

DO 1270 M=I,N
IF(LGE.POINT(M,I).AND.LLE.POINT(M,2)) THEN

*IF(2)
"* DISREGARD SEQUENTIAL ARCS IF ON THE SAME MISSION

IF(NODES(M,4).EQ.K) GOTO 1260
ARCCNT=ARCCNT+ 1
TCOST=COSCAP(L,5)

"* IF THE TCOST IS LESS THAN THE CURRENT VALUE OF SHIFT, MAKE TCOST THE
"* NEW VALUE OF SHIFT AND ADJUST THE TWO COSTS.

IF(TCOST.LT.SHIFT) THEN

92

*IF(3)
SHIFr=TCOST
COST(2)=COST(I)
COST(I)-SHIFT

ELSE
*ELSE(3)

IF(rCOST.GT.SHIFT) THEN
"* IF TCOST IS GREATER THAN THE CURRENT VALUE OF SHIFT BUT LESS THAN
"* THE VALUE OF COST(2), SET COST(2) EQUAL TO TCOST.

IF(TCOST.LT.COST(2)) COST(2)-TCOST
ENDIF
ENDIF

*ENDIF(3)
ENDIF

*ENDIF(2)
1270 CONTINUE

ENDIF
*ENDIF(l)
1260 CONTINUE
"* IF NO TRANSSHIPMENT ARCS TERMINATED ON THE MISSION, A SHIFT OF THE
"* MISSION WILL NOT CAUSE ANY INFEASIBILITIES. DISREGARD THIS MISSION
"* AND PROCEED TO THE NEXT.

IF(ARCCNT.EQ.0) GOTO 1250
"* THE MISSION CAN ONLY BE SHIFTED BY THE MINIMUM OF THE MISSION
"* STARTING TIME AND THE SHIFT DETERMINED ABOVE.

SHIFT=COST(2)
"* THERE MAY BE MORE THAN 1 MOST CRITICAL ARC. THAT IS, THERE MAY
"* BE MULTIPLE ARCS WITH SAME COST THAT WILL BECOME INFEASIBLE WITH A
"* TIME SHIFT. THIS SECTION FINDS ALL OF THEM, DISREGARDING THOSE
"* THAT FALL ON THE SAME MISSION. AN ARC CONNECTING TWO NODES ON THE
* SAME MISSION WILL NEVER BECOME INFEASIBLE WITH A TIME SHIFT.

TRNCNT=0
DO 1265 L=IARCNUM

IF(INT(COSCAP(L,8))NE.K) GOTO 1265
IF(COSCAP(L,5).EQ.COST(1)) THEN

* FIND THE BEGINNING NODE ASSOCIATED WITH THIS ARC.
DO 1275 M=IN-NUMSNK

IF(LGEPOINT(M,1)AND.LLRPOINT(M,2)) THEN
* NODE M IS THE BEGINNING NODE OF THE ARC

IF(INT(NODES(M,4)).EQ.K) GOTO 1265
TRNCNT=TRNCNT+1
BEGARC(TRNCNT)=M
ENDARC(TRNCNT)=INT(COSCAP(L, I))
GOTO 1265

ENDIF
1275 CONTINUE

ENDIF
1265 CONTINUE
"* IF ONLY 1 TRANSSHIPMENT ARC TERMINATED ON THE MISSION, THE VALUE
"* OF SHIFT WILL BE INFINITY. SINCE WE OBVIOUSLY CANNOT SHIFT BY
"* THIS AMOUNT, WE MUST ARBITRARILY DEFINE A VALUE FOR IT. WE NEED A
"* VALUE GREATER THAN COST(l), BUT NOT TOO MUCH GREATER, SINCE WE HOPE

93

* TO PERTURB THE SYSTEM BY AS LITTLE AS POSSIBLE ARBITRARILY SET
"0 SHIFT TO COST(1)+. 1.

IF(SMFT.EQ.INF) S 1,Fr=COST(1)+. l
IF(NODES(BEG*.,iN(K),2).LE.SHIFI) THEN

"IF(4)
SHIFT=NODES(BEGMSN(K),2)
IF(NODES(BEGMSN(K),2).LECOST(I)) THEN

*IF(5"
DO 1266 Q= ITRNCNT

BEGARC(Q)=O
ENDARC(Q)=0

1266 CONTINUE
ENDIF

*ENDIF(5)
ENDIF

*ENDIF(4)
IF(SHIFT.LT.TIMEPS) THEN

SHIFT=SHIFT+TIMEPS
ENDIF
IF((SHIFT-TIMEPS).LE.TIMEPS) THEN

SHIFT=0.
ELSE

SHIFT=SHIFT-TIMEPS
ENDIF

* THE TIME SHIFT HAS NOW BEEN DETERMINED.

* STEP 2: IMPLEMENTATION OF THE TIME SHIFT *

* GENERAL DESCRIPTION OF STEP 2:
* THE IMPLEMENTATION OF THE MISSION'S TIME SHIFT IS PERFORMED BY SUB-
* TRACTING THE AMOUNT OF THE TIME SHIFT FROM THE TIMES ASSOCIATED
* WITH EACH NODE ALONG THE MISSION.
* IF IN STEP I WE DETERMINED THAT THE TIME SHIFT WAS 0.0, THEN THE

* NETWORK WILL NOT BE CHANGED AND WE CAN RETURN TO STEP I WITH A NEW
* MISSION.
* OTHERWISE, THE STATE OF THE NETWORK HAS BEEN CHANGED AND THE COSTS
* OF THE TRANSSHIPMENT ARCS MUST BE UPDATED TO REFLECT THE TIME SHIFT.

* NOT ALL OF THE TRANSSHIPMENT ARCS HAVE CHANGED, HOWEVER. ONLY THOSE
* TRANSSHIPMENT ARCS WHICH ORIGINATE OR TERMINATE ON THE MISSION NEED
* TO BE UPDATED.
* IT IS RECOGNIZED THAT A TIME SHIFT MAY CAUSE THE OVERALL COST OF THE
* FLOW TO INCREASE, OR MAY CAUSE SOME PREVIOUSLY FLOWED CARGO TO REMAIN

* UNFLOWED. SINCE WE CANNOT KNOW THIS BEFORE PERFORMING STEP 2, WE WILL
"* STORE THE CURRENT STATE OF THE NETWORK PRIOR TO PERFORMING STEP 3 IN
"* CASE THE CONDITIONS IN STEP 3 ARE NOT SATISFIED. IF THESE CONDITIONS
"* ARE NOT SATISFIED, WE WILL RESTORE THE PRE-SHIFT STATE OF THE NETWORK.
* IF THE SHIFT EQUALS THE MISSION START TIME, SHIFT THE MISSION
* AND UPDATE NODES AND COSCAP APPROPRIATELY. NO ARCS HAVE
* BECOME INFEASIBLE. INCREMENT CHANGE BY 1.
* IF THE SHIFT EQUALS COST(2) (DEFINED ABOVE), THEN TEMPORARILY
* SHIFT THE MISSION AND UPDATE TNODES AND COSCAP APPROPRIATELY.
* INCREMENT CHANGE BY 1.

94

*IF THE SHIFT EQUALS 0 OR INFINITY, THERE IS NO NEED TO PERFORM A SHIFT.
IF(SHIFT.NEJINF.AND.SHIFT. OT. 0.) THEN

*IF(6)
"* STORE PATHS, CAPACITES, AND NODE TIMES (FOR THIS MISSION) IN CASE
"* CHANGES HAVE TO BE UNDONE LATER.

DO 1280 M= IXATHNUM
'ITRNS(M)=TRNS(M)
TFLONM(MNfrFLONUM(M)
DO 1290 V= 1,FLONUM(M)

TPATH(M,V)=-PATHi(M,V)
1290 CONTINUE
1280 CONTINUE

DO 1300 V=BEGMSN(K),ENDMSNQC)
TNODES(V,2)=NODES(V,2)

1300 CONTINUE
DO 1315 V=1.ARCNUM

COSCAP(V,2)=COSCAP(V,g)
COSCAP(V,3)=COSCAP(V,6)
COSCAP(VA4)=COSCAP(V,7)

1315 CONTINUE
DO 1310 V=BEGMSN(K),ENDMSN(K)

NODES V,2)=NODES(V,2)-SHIFT
13 10 CONTINUE

*SETTING FEAS EQUAL TO 1 INDICATES THAT A FEASIBLE SHIFT WILL OCCUR.
*THAT IS, NO CARGO WILL HAVE TO BE REFLO WED.

IF(BEGARC(l).EQ.0) FEAS= 1
*NOW THAT THE TIMES ASSOCIATED WITH THE MISSION HAVE BEEN
*CHANGED, THE TIMES IN THE NODES MATRIX AND THE COSTS IN THE
*COSCAP MATRIX MUST BE UPDATED.
*CHANGE COSCAP FOR EVERY ARC THAT TERMINATES ON THE MISSION

1320 DO 1330 W=1,N-NUMSNK
IF(POINT(W,1).LT7.0) GOTO 1330
DO 1360 V=POINT(W,1),POINT(W,2)

IF(INT(NODES(INT(COSCAP(V,1)),4)).EQ.K) THEN
*IF(7)

IF(NODES(W,2).LE-NODES(INT(COSCAP(V,1)),2)) THEN
*IF(9)

COSCAP(V,5)=NODES(INT(COSCAP(V,1)),2)ý-
C NODES(W,2)

IF(ABS(COSCAP(V,6)-COSCAP(V,7)).LE.EPSIWON) THEN
*IF(9.5)

COSCAP(V,5)=[NF
ENDIF

*ENDIF(9.5)
ELSE

*ELSE(9)
COSCAP(V,5)=INF

ENDIF
*ENDIF(9)

ENDIF
1360 CONTINUE
*ENDIF(7)

95

1330 CONTINUE
* WE MUST ALSO CHANGE COSCAP FOR ALL THE ARCS EMANATING FROM THE MISSION

DO 1370 W=BEGMSN(K),ENDMSN(K)
IF (POINT(W,I).LT.0) GOTO 1370

DO 1380 V=POINT(WI),POINT(W,2)
IF(INT(COSCAP(V,I))GT.N.NUMSNK) GOTO 1380
IF(NODES(W,2).LE.NODES(INT(COSCAP(V,I)),2)) THEN

*IF(10)
COSCAP(V,5)=NODES(INT(COSCAP(V,I)),2)-NODES(W,2)

IF(ABS(COSCAP(V,6)-COSCAP(V,7)).LF.EPSILON) THEN
*IF(10.6)

COSCAP(V,5)=INF
ENDIF

*ENDIF(10.6)
ELSE

*ELSE(10)
COSCAP(V,5)=INF

ENDIF
*ENDIF(10)
1380 CONTINUE
1370 CONTINUE

CONTINUE
* THE TIME SHIFT HAS NOW BEEN IMPLEMENTED. IF ONLY A FEASIBLE SHIFT IS
* APPLICABLE, WE NEED NOT PROCEED TO STEP 3. INSTEAD, WE RETURN TO
* STEP 1 WITH THE NEXT MISSION.

IF(FEAS.EQ. 1) THEN
*IF(10.5)
* COMPUTE THE NEW OVERALL COST OF THE FLOW.
1375 TOTAL=O.

DO 1410 M=1,PATHNUM
TIS=NODES(PATH(M,FLONUM(M)- I),2).NODES(PATH(M,1),2)
TOTAL=TOTAL+(TISPTHFLO(M))

1410 CONTINUE
DO 1415 M=IARCNUM

COSCAP(M,6)=COSCAP(M,3)
COSCAP(M,7)=COSCAP(M,4)
COSCAP(M,8)=COSCAP(M,2)

1415 CONTINUE
IF(SHIFT.GT.0.) CHANGE=CHANGE+I
GOTO 1250

ENDIF
*ENDIF(10.5)

* STEP 3: MEASURING THE IMPACT OF THE TIME SHIFT *

GENERAL DESCRIPTION OF STEP 3:
* BY IMPLEMENTING THE TIME SHIFT, WE HAVE FORCED A TRANSSHIPMENT ARC

* TO BECOME INFEASIBLE. THIS MEANS THAT EVERY COMMODITY WHICH FLOWED
* OVER THAT ARC MUST BE REFLOWED. IN ORDER FOR A COMMODITY TO BE
* REFLOWED, THREE CONDITIONS MUST BE SATISFIED:
* CONDITION 1: AN ALTERNATE PATH MUST EXIST OVER WHICH THE CARGO
* CAN BE FLOWED.

96

* CONDITION 2: USING THIS ALTERNATE PATH MAINTAINS OR REDUCES THE

* OVERALL COST OF THE NETWORK.
* CONDITION 3: THERE MUST EXIST ENOUGH REMAINING CAPACITY ON THE
* ALTERNATE PATH TO HANDLE THE REFLOWED COMMODITY.
* IF ANY ONE OF THESE CONDITIONS IS NOT SATISFIED, THEN THE COMMODITY
* CANNOT BE REFLOWED AND THE TIME SHIFT MUST BE REVERSED.
* WE BEGIN OUR CHECK OF THE IMPACT BY FINDING ALL THE PATHS USED IN THE
* FLOW THAT CONTAIN THE MOST CRITICAL ARC. FOR EACH PATH WE WILL CHECK
* THE ABOVE CONDITIONS. THIS CHECK IS PERFORMED IN SUBROUTINE STEP3.

DO 1425 Q=ITRNCNT
"* FIND ALL PATHS THAT CONTAIN THE CRITICAL ARC BEGARC(Q)-ENDARC(Q).
"* CHNGIT IS A 0- 1 VARIABLE USED TO DETERMINE WHETHER A CONDITION HAS
"* BEEN VIOLATED. 0=NO VIOLATION, I =VIOLATION.

CHNGIT=0
1420 DO 1430 M=1,PATHNUM

DO 1440 P=-2,FLONUM(M)-I
IF(PATH(MP- 1).EQ.BEGARC(Q).AND.PATH(MP).EQ.ENDARC(Q))

C THEN
*IF(12)
"* A PATH HAS BEEN FOUND WHICH CONTAINS THE CRITICAL ARC. THE NUMBER
"* OF THE PATH (ITS PLACE IN THE SEQUENCE) IS STORED IN NUMPATH FOR USE
"* IN SUBROUTINE STEP3.

NIJMPATH=M
"* SUBROUTINE STEP3 IS CALLED.

CALL STEP3(CHNGIT,K,CALLSTOTALQ)
IF(CHNGIT.EQ.0) THEN

*IF(13)
"* ALL CONDITIONS FOR THIS PATH HAVE BEEN SATISFIED. PROCEED WITH THE
"* NEXT PAMR

GOTO 1430
ELSE

*ELSE(13)
* A CONDITION FOR THIS PATH HAS NOT BEEN SATISFIED. PROCEED TO STEP 4.

GOTO 1450
ENDIF

*ENDIF(13)
ENDIF

*ENDIF(12)
1440 CONTINUE
1430 CONTINUE
1425 CONTINUE
"* ALL THE AFFECTED PATHS CONTAINING BEGARC(Q)-ENDARC(Q) HAVE SATISFIED
"* THE CONDITIONS OF STEP 3. THE TIME SHIFT OF STEP 2 IS PERMANENT.
"* PROCEED TO STEP 1 WITH A NEW MISSION.
"* COMPUTE THE NEW OVERALL COST OF THE FLOW.

TOTAL=0.
DO 1460 M=1,PATHNUM

TIS=NODES(eATH(M,FLONUM(M)-1),2)-NODES(PATH(M,1),2)
TOTAL=TOTAL+(TIS*PTHFLO(M))

1460 CONTINUE
CHANGE=CHANGE+I
GOTO 1250

97

* STEP 4: REVERSAL OF THE TIME SHIFT'

* GENERAL DESCRIPTION OF STEP 4:
* SINCE THE CARGO FLOWED OVER THE CRITICAL PATH CANNOT BE REFLOWED
* WITHOUT INCREASING OVERALL COST OR REDUCING OVERALL CARGO, THE TIME
* SHIFT OF STEP 2 HAS HAD AN DAMAGING IMPACT ON THE FLOW PATTERN.
* WE MUST RESTORE THE NETWORK TO ITS PRE-SHIFT STATE, DETERMINE A TIME
* SHIFT WHICH WILL MAINTAIN FEASIBILITY, AND RE-SHIFT THE MISSION.

RESET THE NODE TIMES FOR EACH NODE ALONG THE MISSION.
1450 DO 1470 V=BEGMSN(K),ENDMSN(K)

NODES(V,2)=TNODES(V,2)
1470 CONTINUE
* RESET THE SHIFT TO EQUAL THE MINIMUM OF THE LEAST COST ARC AND THE
* BEGINNING OF THE MISSION
1480 IF(COST(I).GE.NODES(BEGMSN(K),2)) THEN
*IF(14)

SHIFT=NODES(BEGMSN(K),2)
ELSE

*ELSE(14)
SHIFT=COST(1)

ENDIF
*ENDIF(14)

IF(SHIFT.LT.TIMEPS) THEN
SHIFT=SHIFT+TIMEPS

ENDIF
IF((SHIFT-TIMEPS).LE .TIMEPS) THEN

SHIFT=0.
ELSE

SHIFT=SHIFT-TIMEPS
ENDIF

* IMPLEMENT THE TIME SHIFT BY ADJUSTING THE TIMES OF THE NODES ALONG
* THE MISSION

DO 1490 V=BEGMSN(K)ENDMSN(K)
NODES(V,2)=NODES(V,2)-SHIFT

1490 CONTINUE
"* SET FEAS EQUAL TO I TO INDICATE THAT A FEASIBLE SHIFT WILL OCCUR.

FEAS=I
"* RESET THE PATHS TO THEIR PRE-SHIFT STATES

DO 1500 V=l,PATHNUM
TRNS(V)=TTrRNS(V)
FLONUM(V)=TFLONM(V)
DO 1510 W=ITFLONM(V)

PATH(V,W) TPATH(V,W)
1510 CONTINUE
1500 CONTINUE
* RETURN TO THE PORTION OF STEP 2 THAT UPDATES THE COSTS.
* NOW THAT THE TIMES ASSOCIATED WITH THE MISSION HAVE BEEN
* RESET AND CHANGED, THE TIMES IN THE COSCAP MATRIX MUST BE UPDATED.
* CHANGE COSCAP FOR EVERY ARC THAT TERMINATES ON THE MISSION
2320 DO 2330 W= I,N-NUMSNK

IF(POINT(W,1).LT.0) GOTO 2330

98

DO 2360 V=POINT(W,1),POINT(W,2)
IF(INT(NODESQrNT(COSCAP(V, 1)),4)).EQ.K) THEN

1IF(77)
IF(NODES(W,2).LENODES4?INT(COSCAP(V,1)),2)) THEN

1IF(79)
COSCAP(VS)=NODES(INT(COSCAP(V, 1)),2)-

C NODES(W,2)
IF(ABS(COSCAP(V,6)-COSCAP(V,7)W.LEEPSILON) THEN

*1F(79.5)
COSCAP(V,5)=-INF

ENDIF
*ENDIF(79.5)

ELSE
*ELSE(79)

COSCAP(V,5)=-INF
ENDIF

*ENDIffF(79)
ENDIF

*END)IF(77)
2360 CONTINUE
2330 CONTINUE

*WE MUST ALSO CHANGE COSCAP FOR ALL THE ARCS EMANATING FROM THE MISSION
DO 2370 W=BEGMSN(K),ENDMSN(K)

IF (POINT(W,1).LT.0) GOTO 2370
DO 2380 V=POINT(,1),POINT(W,2)

IF(NODES(W,2).LE.NODES(INT(COSCAP(V,1)),2)) THEN
*IF(80)

COSCAP(V,5)=NODES(INT(COSCAP(V,l)),2)-NODES(W,2)
IF(ABSCOSCAP(V,6)-COSCAP(V,7)).LE.EPSILON) THEN

*IF(80.6)
COSCAP(V,5)=INF

ENDIF
*ENDIF(80.6)

ELSE
*ELSE(80)

COSCAP(V,5)=INF
ENDIF

2380CSONTNU
2370 CONTINUE

230GONTO137
ELSE137

ELSE(6
*IF TE SITI NIIT R00 HN OOT TP1 IHTENX

*MISSION.

GOTO 1250
ENDIF

*ENDIF(6)
1250 CONTINUE

*OUTPUT

99

WRITE(*,*Changcs = ',CHANGE,', Calls to Dijkmtra = ,CALLS
"* AS THE PROGRAM PERFORMED STEPS 1-4, IT KEPT TRACK OF THE NUMBER OF
"* CHANGES IT MADE TO THE NETWORK.
"* ONE OPTION IS TO PERFORM STEPS 1-4 UNTIL NO MORE CHANGES CAN BE MADE.
"* INITIAL TESTING SHOWS THAT THIS TAKES HOURS TO ACCOMPLISH. AN
"* ALTERNATIVE IS TO PERFORM THE STEPS FOR ONLY ONE PASS THROUGH THE
"* MISSION SET AND THEN RETURNING CONTROL TO THE FLOW SUBROUTINES.
"* THE FOLLOWING IF STATEMENT ALLOWS THE USER TO DETERMINE WHICH OPTION
"* IS PREFERRED. COMMENTING OUT THE LINE FACILITATES THE SINGLE PASS
"* OPTION.

IF((MSNPAS.LT.PASSES).AND.(CHANGE.GT.0)) GOTO 1240
IF((MSNPAS.EQ. 1).AND.(CHANGEEQ.0)) TERCRI=1
OPEN(UNIT=SILE='newsched.dat,STATUS='UNKNOWN',FORM='FORMATTED')

"* THE FOLLOWING LOOP DESIGNATES A UNIQUE FILENAME TO EACH ITERATION'S
"* SCHEDULE
"* THE FILE 'newschedcdat' IS GENERATED FOR USE IN THE FLOW SUBROUTINES.

TEMPI=ITER
EXT=.c,
DO 1520 I=2,0,-I
RATIO=INT(TEMP/(10"*I))
TEMP=TEMP-RATIO(10*I)

POS1+ 1)=CHAR(48+RATIO)
1520 CONTINUE

NS=POS(3)//POS(2)//POS(1)
FILNAM='sched'//NS//EXT
PTHNAM=-paths'//NSIIEXT
WRrES,1530)NUMMSN

1530 FORMAT(13)
DO 1540 I=INUMMSN

WRITE(8,1550)NUMNODE(1),AC(1),ACCAP(1),MSNCOD(1)
1550 FORMAT(I3,1X,A4,F5.1,2X,A1)

DO 1560 J=BEGMSN(I),ENDMSN(I)
WRITE(8,1570)NODIKO(J,I),NODES(J,2)

1570 FORMAT(A4,lxF20.10)
1560 CONTINUE
1540 CONTINUE

OPEN(UNIT= 14,FILE=PTHNAM,STATUS='UNKNOWN',FORM='FORMA1TD')
"* THIS SECTION WRITES OUT THE PATH A COMMODITY TAKES. FOR EACH
"* ITERATION THIS PATH SET IS GENERATED. IF THE FLOW SUBROUTINES
"* ARE UNABLE TO IMPROVE UPON IT, THE MOST RECENT VERSION OF
"* 'Path###.c' WILL CONTAIN THE BEST FLOW PATTERN.

OPEN(UNIT= 15,FILE='paths.oute,STATUS='OLD',FORM='FORMAITED')
MODTOT=0.
MODFLO=0.
DO 1581 1=1,60

TRNDISQ)=0
TISDIS(I)=O.

1581 CONTINUE
REFLOW=0.
DO 1580 I=IPATHNUM

"* THIS SECTION DETERMINES HOW MUCH CARGO WAS REFLOWED BY COMPARING THE
"* FINAL PATH MATRIX WITH THE INITIAL PATH MATRIX (STORED IN paths.out').

100

"* IF THE NUMBER OF NODES ON THE PATH HAS CHANGED, THERE HAS OBVIOUSLY
"* BEEN A REFLOW. IF THE NUMBER OF NODES IS THE SAME, WE MUST CHECK TO
"* SEE IF THE PATH ITSELF HAS CHANGED. IF IT HAS, THERE HAS BEEN A REFLOW.

READ(15,*)TISYS,TRANS,FLO,FLNUM,(INPATH(J),J=1,FLNUM)
IF(FLNUNvLNE.FLONIJM(I)) THEN

REFLOW=REFLOW+PTHfFLO(I)
ELSE

DO 1582 K=1,FLONUMQI)
IF(INPATH(K).NE.PATH(IK)) THEN

REFLOW=REFLOW+PTHFLO(I)
GOTO 1583

ENDIF
1582 CONTINUE

ENDIF
1583 TRNDIS(TRNSQI)+1)=TRNDIS(TRNS(I)+1)+1

TISPTH=NODES(PATH(I,FLONUM(I)-l),2)-NODES(PATH(I,l),2)
IFMTSPT~ILT.0.) THEN

WRrME*,*YPATH ',,' HAS NEGATIVE TIS!'
ENDIF
MODTOT=MODTOT+TISPTHPTfHFLO(I)
MODFLO=MODFLO+PTHFLOQI)
TISDIS(INT(SPTH+1))=TISDIS(INTMTSPTH+))+PTHFLOQl)
WRITE(14,*)' TIS: ,TISPTH,' FLOW: ,PTHFLO(I)
WRITE(14,)' COST OF THIS FLOW:- ',TISPTH*PTHFLO(I)
WRIfh(14,)' NO. OF TRANSSHIPMENTS:%'TRNSQl)
WRrME14,*Y ICAO MSN NO. TIME NODE NUMBER'
WRrTM(14,*Y)====== '
DO 1590 J=1,FLONUM[(I)
WRrME14,1600)NODIKO(PATH(I4,1),I)NT(NODES(PATH(I,J),4)),

C NODES(PATH(IJ),2),PATH(IJ)
1600 FORM[AT(2XA4A4X,4,5X"F.2,5X,16)
1590 CONTINUE

WRrME14,*)
WRrME14,*)

1580 CONTINUE
MODFLO=0.
DO 1595 J=NUMCAR+1IN.NUMSNK

IF(POINT(J,1).LT.0) (30T0 1595
DO 1596 K=POINT(J,1),POINT(J,2)

IF(INT(COSCAP(K,1)).GT.(N-NUMSNK)) THEN
MODFLO=MODFLO+COSCAP(K,7)

ENDIF
1596 CONTINUE
1595 CONTINUE

WRn`E(14,*)TOTAL CARGO FLOWED (TONS): ',MODFLO
WRITE(14,*)'TOTAL COST OF THIIS FLOW: ',MODTOT
WRrME14,*)TOTAL CARGO REFLO WED (TONS): ',REFLOW
WRITE(7,*)TOTAL CARGO REFLO WED (T7ONS): ',REFLOW
WRfTE(*,)'REFLOW THIS ITERATION (tons): ',REFLOW
WRITE(14,*)
WRrTM14,*Y TRANSSHIPMENT DISTRIBUTION'
WRrME14,*)

101

WRrIE(14,*y NUMBER OCCURENCES'
WRrTE(14,*y
WRrTE,*)
WRITE(7,*) TRANSSHIPMENT DISTRIBUTION'
WRT•7,)
WRITE(7,*' NUMBER OCCURENCES'

,IRITE(7)Y-
DO 1503 1=1,60
IF (TRNDISI).GT.O) THEN
WRITE(14,1505XI.1),TRNDIS(I)
WRTE,I505)(I-I),TRNDISQ)

1505 FORMAT(16,113)
ENDIF

1503 CONTINUE
WRITE(14,*)
WR1TE(14,*Y TIME-IN-SYSTEM DISTRIBUTION'
WRrTE(14,*)
WRITE(14,*)' DAYS TONNAGE'
WRITE(14,*Y)
WRITE(7,*)
WRITE(7,*Y TIME-IN-SYSTEM DISTRIBUTION'
WRITE(7,*)
WRITE(7,*)' DAYS TONNAGE
WRITFW,*)'
DO 1504 1=1,60
IF (TISDIS%).T.0.) THEN
WRITE(14,1506XI1-)J,TISDISQ)
wrrEw,1506)(1-1),,TISDISQ)

1506 FORMAT(I2,'-',12,F10.2)
ENDIF

1504 CONTINUE
WRITE(5,*)

CLOSE(g)
CLOSE(14)
CLOSE(15)
RETURN
END

SUBROUTINE STEP3(CHNGITJrCALLS,TOTAL,Q)

* THIS SUBROUTINE IS A COMPANION TO SUBROUTINE MODMSN. IT CHECKS
* TO SEE IF THE CONDITIONS OF STEP 3 ARE SATISFIED.

RECALL THAT THOSE CONDITIONS ARE:
* CONDITION 1: AN ALTERNATE PATH MUST EXIST OVER WHICH THE CARGO
* CAN BE FLOWED.
* CONDITION 2: USING THIS ALTERNATE PATH MAINTAINS OR REDUCES THE
* OVERALL COST OF THE NETWORK.
* CONDITION 3: THERE MUST EXIST ENOUGH REMAINING CAPACITY ON THE
* ALTERNATE PATH TO HANDLE THE REFLOWED COMMODITY.

INTEGER NPATHNUMPATH(500,75),NUMCAR
INTEGER NUMSNK,NUMNODE(4999),BEGMSN(1000),ENDMSN(1000)

102

INTEGER FLONUM(4999),NUM(4999)MMSNS,T
INTEGER ITERPOINT(4999,2),ARCNUMSTPATH
INTEGER FLNUMFLPATH(4999),NUMPATH
INTEGER CALLS,CHNGITCNTNUMTRNLOTRN
INTEGER K.TRNDIS(60),TRNS(500)
INTEGER BEGARC(500),ENDARC(500)
INTEGER CMPCNTPREV

REAL COSCAP(89999,8),INFPRED(4999),DIST(4999)
REAL NODES(4999,4),TNODES(4999,4),ACCAP(1000)
REAL PTHFLO(500),TOTALTCOSFLTISDIS(60)
REAL TIS,TIA,DELTA
REAL EPSILONTIMEPS

CHARACTER NODIKO(4999,2)*4
CHARACTER AC(1000)*4,MSNCOD(1000)* I

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITEREPSILON
COMMON /PARAMS/ MAXIT,MAXALTMAXTRNCARCRIPASSESSORCRI,TIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,

C FLONUM, PATHNUM, PTHFLO, MSNCOD
COMMON /CHNG/ NUMPATH, BEGARC, ENDARC

* CONDITION 1: FINDING ALTERNATE PATHS *

* GENERAL DESCRIPTION OF CONDITION 1:
* IN SUBROUTINE MODMSN A PATH (NUMBERED NUMPATH) WAS FOUND WHICH
* CONTAINS THE CRITICAL ARC. IN ORDER TO DETERMINE WHETHER ALTERNATE
* PATHS EXIST WE WILL CALL SUBROUTINE DIJKSTRA.

* IF ANY SUCH ALTERNATE PATHS EXIST, SUBROUTINE DIJKSTRA WILL GENERATE
* A PARTIAL LIST OF THEM. THIS PATH REPRESENTS ALL THE CANDIDATES FOR
* REPLACEMENT PATHS. IT IS THESE PATHS TO WHICH CONDITIONS 2 AND 3 WILL
* BEAPPLIED.
* DEFINE S AND T TO BE USED IN DIJKSTRAS ALGORITHM

S=PATH(NUMPATH,I)
T=PATH(NUMPATH,FLONUM(NUMPATH))

* FORCE THE MOST CRITICAL ARC TO BE INFEASIBLE THIS
* SHOULD HAVE BEEN DONE WITH TIME SHIFT, BUT JUST IN CASE...

DO 1620 V=POINT(BEGARC(Q),I),POINT(BEGARC(Q),2)
IF(INT(COSCAP(V,I)).EQ.ENDARC(Q)) THEN

*IF(l)

COSCAP(V,5)=INF
* SETTING COSCAP(V,8) TO 0 REMOVES THE ARC FROM FUTURE CONSIDERATION.

COSCAP(V,8)=0.
ENDIF

*ENDIF(l)
1620 CONTINUE
* FILE 'altout CONTAINS THE CANDIDATE ALTERNATE PATHS FROM S TO T.

OPEN(UNIT= 1 I,FILE='alt2.out,STATUS='UNKNOWNFORM='FORMATrED')
IF(S.EQ.0) WRITE(*,*)'S = 0 BEFORE DIJKSTRA'

103

CALL DlJKSTRA(S,T,STPATHLOTRN)
CLOSE I)
OPEN(UNIT13,FILE='aIt2.out',STATUS='OLD',FORM='FORMATrED)
CALLS=CALLS+ 1
IF(STPATREQ.0) THEN

*IF(2)
"* IF NO ALTERNATE PATH CAN BE FOUND, CONDITION I HAS NOT BEEN
"* SATISFIED.
"* SET THE VARIABLE CHNGIT TO 1, INDICATING THAT A CONDITION HAS NOT
"* BEEN SATISFIED. RETURN TO SUBROUTINE MODMSN.

CHNGIT=1
RETURN

ENDIF
*ENDIF(2)

* CONDITION 2: DOES AN ALTERNATE PATH EXIST WHICH REDUCES OR
* OR MAINTAINS THE OVERALL COST OF THE FLOW?

* GENERAL DESCRIPTION OF CONDITION 2:

* WE NOW HAVE A LIST OF CANDIDATE ALTERNATE PATHS. WE MUST DETERMINE
* IF REPLACING THE CURRENT PATH WITH AN ALTERNATE PATH MAINTAINS OR
* REDUCES THE OVERALL COST OF THE FLOW. IF NO SUCH PATH EXISTS, THEN

* CONDITION 2 HAS NOT BEEN SATISFIED AND THE PROGRAM RETURNS TO
* SUBROUTINE MODMSN.
1640 READ(13,*,END=1650)TIS,TADELTAUNUMTRN,FLNUM,

c (FLPATH(V),V=lFLNUM)
"* CHECK TO SEE IF THE COST OF FLOWING THE CARGO ALONG THIS PATH IS
"* LESS THAN BEFORE THE SHIFT.
"* TCOSFL IS THE OVERALL COST OF THE FLOW GIVEN THAT THE CURRENT PATH
"* HAS BEEN REPLACED BY AN ALTERNATE PATH.

TCOSFL=0.
DO 1660 I=IPATHNUM

IF(I.NE.NUMPATH) THEN
*IF(3)

TIS=NODES(PATH(I,FLONUM(I)-I),2)-NODES(PATH(I,1),2)
TCOSFL=TCOSFL+TIS*PTHFLO(1)

ENDIF
*ENDIF(3)
1660 CONTINUE
* ADD COST OF NEW ALTERNATE PATH

TIS=NODES(FLPATH(FLNUM-1),2)-NODES(FLPATH(1),2)
TCOSFL=TCOSFL+(FTHFLO(NUMPATH)*TIS)
IF(TCOSFLGT.TOTAL) THEN

*IF(4)
"* SINCE USING THIS PATH INCREASES OVERALL COST, WE MUST CONTINUE TO
"* LOOK FOR ANOTHER ALTERNATE PATH.

GOTO 1640
ENDIF

*ENDIF(4)
"* IF WE FIND AN ALTERNATE PATH THAT DOES NOT INCREASE THE OVERALL COST,
"* WE PROCEED ON TO CONDITION 3.
** ** ***********************************.******** ***********.******* ****1

104

* CONDITION 3: DOES AN ALTERNATE PATH EXIST WHICH REDUCES OR
* MAINTAINS [HE OVERALL COST OF THE FLOW AND
* HAS ENOUGH REMAINING CAPACITY TO HANDLE THE *

* CURRENT FLOW?

"* GENERAL DESCRIPTION OF CONDITION 3:
"* WE HAVE NOW FOUND AN ALTERNATE PATH WHICH, IF USED, WILL MAINTAIN OR
"* REDUCE THE OVERALL COST OF THE FLOW. BUT BEFORE WE CAN PERMANENTLY
"* REPLACE THE CURRENT PATH WITH THIS ALTERNATE, WE MUST VERITY THAT
"* THE ALTERNATE HAS ENOUGH CAPACITY TO HANDLE THE CURRENT FLOW.
"* TO CHECK THE CAPACITIY OF THE ALTERNATE PATH WE NEED ONLY LOOK AT THE
"* CAPACITIES OF THE ARCS WHICH ARE ON THE ALTERNATE PATH AND NOT ON THE
"* ORIGINAL PATH.

DO 1670 I=2,FLNUM-2
DO 1675 J=2,FLONUM(NUMPATH)-2

IF((PATH(NUMPATHJEQ.FLPATH(1))AND.(PATH(NUMPATHJ+ 1).
C EQ.FLPATH(I+1))) THEN

*IF(4.5)
"* A MATCH HAS BEEN FOUND, SO WE MOVE ON TO THE NEXT ARC IN THE
"* ALTERNATE PATH.

GOTO 1670
ENDIF

*ENDIF(4.5)
1675 CONTINUE
"* IF THIS SECTION IS REACHED, NO MATCH HAS BEEN FOUND SO WE MUST CHECK
"* THE CAPACITY OF THE APPROPRIATE ARC IN THE ALTERNATE PATH.

IF(POINT(FLPATH(I),l1 EQ.- I) THEN
WRITE(*,*)'BEFORE 1680,-i'

ENDIF
DO 1680 A=POINT(FLPATH(I),I),POINT(FLPATH(1),2)

IF(INT(COSCAP(A,I)).EQ.FLPATHQ+ 1)) THEN
*IF(5)

IF((COSCAP(A,6)-COSCAP(A,7)).LT.FPHFXO(NUMPATH))
C THEN

*IF(6)
"* THIS ALTERNATE PATH DOES NOT HAVE ENOUGH CAPACITY. WE MUST CONTINUE
"* THE SEARCH FOR A PATH WHICH SATISFIES CONDITIONS 2 AND 3.

GOTO 1640
ELSE

*ELSE(6)
ENDIF

*ENDIF(6)
ENDIF

*ENDIF(5)
1680 CONTINUE
1670 CONTINUE
"* WE HAVE FOUND A PATH THAT SATISFIES CONDITIONS 2 AND 3. WE MUST
"* NOW REPLACE THE CURRENT PATH WITH THIS NEW ALTERNATE PATH.
"* IF THE NUMBER OF TRANSSHIPMENTS ON THIS NEW ALTERNATE PATH EXCEEDS
"* 0, THEN WE WILL CALL SUBROUTINE COMPRESS TO COMPRESS IT TO ITS
"* ACTUAL PATH.

105

* CALLING SUBROUTINE COMPRESS *

* ESTABLISH THE PREDECESSOR ARRAY

DO 1671 I=2,FLNUM
PRED(FLPATH(1))=FLPATH(I-1)

1671 CONTINUE
PRED(S)=-1
if(ITER.EQ.3).AND.(K.EQ. 120)) THEN

WRITE(*,*YPATH = ',NUMPATH,' PRED =',

c (PRED(FLPATH(A)),A= 1,FLNUM)
ENDIF
CALL COMPRESS(S,T,STPATHNUMTRN)
IF (NUMTRN.GT.MAXTRN) GOTO 1640

"* WE MUST GLEAN FROM THE NEW PREDECESSOR ARRAY (RETURNED BY COMPRESS)
"* WHAT THE NEW COMPRESSED PATH IS.

FLNUM=0
CMPCNT=T

1672 IF(PRED(CMPCNT).EQ.- 1) THEN
FLNUM=FLNUM+ 1
GOTO 1673

ELSE
FLNUM=FLNUM+1
CMPCNT=PRED(CMPCNT)
GOTO 1672

ENDIF
1673 CONTINUE

FLPATH(FLNUM)=T
FLPATH(I)=S
PREV=T
DO 1674 I=FLNUM-1,2,-i

FLPATH(I)=PRED(PREV)
PREV=FLPATH(I)

1674 CONTINUE
"* THE NEW PATH HAS NOW BEEN COMPRESSED.
"* NOW THAT WE KNOW THE NEW PATH CAN HANDLE THE NEW FLOW, WE MUST

REMOVE THE OLD FLOW FROM THE PATH AND REPLACE IT WITH THE NEW.

* PATH REPLACEMENT *

* GENERAL DESCRIPTION OF PATH REPLACEMENT:
* WE REPLACE THE CURRENT PATH WITH THE NEW PATH BY PERFORMING SEVERAL
* STEPS:

* STEP 1: ADD THE CURRENT FLOW BACK TO THE OLD PATH
* STEP 2: DETERMINE IF THE ARCS ON THE OLD PATH ARE USED ELSEWHERE.
* IF NOT, REMOVE THESE ARCS FROM CONSIDERATION IN

SUBROUTINE MODMSN STEP 1.
* STEP 3: SWITCH THE PATHS.
* STEP 4: INCREMENT THE FLOW OF THE NEW PATH APPROPRIATELY.
* STEP 5: MARK THE NEW PATH WITH APPROPRIATE MISSION IDENTIFIERS.

* PATH REPLACEMENT STEP 1: REMOVE THE CURRENT FLOW FROM THE OLD PATH

106

DO 1690 I= 1,FLONUM(NIJMPATH)-1I
IF(POINT(PATH(NUMPATHJ,I),)EQ.-1) THEN
WRrTE('*)*BEFORE 1700,-i'
ENDIF
DO 1700 J=POINT(PATH(NUMPATH,),1),POINT(PATH(NUMPATHI),2)

IF(INT(COSCAP(J, 1)).EQ.PATH(NIJMPATHJ+ 1)) THEN
1IF(8)

COSCAP(J,7)=COSCAP(J,7)-PTHFLO(NUTWMPA
ENDIF

*ENDIF(g)
1700 CONTINUE
1690 CONTINUE

*PATH REPLACEMENT STEP 2: DETERMINE IF ARCS ARE USED ELSEWHERE

DO 1710 I"1,FLONUM(NUMPATH)-1
*CNT IS A 0- 1 VARIABLE USED TO DETERMINE IF AN ARC IS USED ELSEWHERE.
* =NOT USED, 1=USED.

CNT=0
DO 1720 J= 1,PATHNUM

IF(J.NE.NUMPATH) THEN
*IF(9)

DO 1730 V=1,FLONUM(J)-1
IF(PATH(NUMPATHI).EQ.PATH(J,V).AND

C PATH(NUMPATHI+ 1).EQ.PATH(JN+ 1)) THEN
1IF(10)

CNT=I
ENDIF

*ENDIF(I0)
1730 CONTINUE

ENDIF
*END.IF(9)
1720 CONTINUE

IF(CNT.EQ.0) THEN
IF(POINT(PATH(NUMPATHJI),1).EQ.-l) THEN

WRITE(, 5)'BEFORE 1740, -1-
ENDIF

IF(l 1)
DO 1740 V=POINT(PATH(NUMPATHJ,I),),POINT(PATH(NUMPATHI),2)

IFQINT(COSCAP(V,1)).EQ.PATH(NUMPATH,I+ 1)) THEN
*1F(12)

COSCAP(V,8)=O.
ENDIF

-ENDIF(12)
1740 CONTINUE

ENDIF
*ENDIF(1 1)
1710 CONTINUE

PATH REPLACEMENT STEP 3: SWITCH THE PATHS

TRNS(NIJMPATH)--NUMTRN

107

FLONUM(NUMPATH)=FLNUM
DO 1750 1= 1,FlONUM(NUMPATH)

PATH(NUMPATHI)=FLPATH(I)
1750 CONTINUE

*PATH REPLACE.MENT STEP 4: INCREMENT THE FLOW OF THE NEW PATH

DO 1760 1= 1,FlONUM(NUMPATH)- I
IF(F)INT(PATH(NUMPATHJ,I),).EQ.. 1) THEN

WR1TE(*,)'BEFORE 1770, -1'
ENDIF
DO 1770 J=POITPATH(NUPATH,),1),POINT(PATH(NUMPATHI),2)

IF(INT(COSCAP(J,1)).EQ.PATH(NUMPATH,+I+)) THEN
*IF(13)

COSCAP(J,7)=COSCAP(J,7)+PTHFLO(NUMPATH)
IF(ABS(COSCAP(J,6)ý-COSCAP(J,7))iE.EPSILON) THiEN

1IF(13.5)
COSCAP(J,5)=INF

ENDIF
OENDIF(13.5)

ENDIF
*ENDIF(13)
1770 CONTINUE
1760 CONTINUE

*PATH REPLACEMENT STEP 5: MARK THE NEW PATH WITH APPROPRIATE MISSION
* ~IDENTIFIERS

DO 1780 I= 1,FlONUM(NUMPATH)-2
IF(POINT(PATH(NUMPATHJ,I),1.EQ.- 1) THEN

WRITE(*)BEFORE 1790,- I'
ENDIF
DO 1790 J=POINT(PATH(NUMPATHI),),POINT(PATH(NUMPATHI),2)

IF(INT(COSCAP(J,l)).EQ.PATH(NUMPATH,+I+)) THEN
*IF(14)

DO 1800 V=1NUMMSN
IF(INT(COSCAP(J,I)).GE.BEOMSN(V)AND.

C INT(COSCAP(J,1)).LE.ENDMSN(V)) THEN
*1F(15)

COSCAP(J,S)=V* 1.0
ENDIF

*ENDIF(15)
1800 CONTINUE

ENDIF
*ENDIF(14)
1790 CONTINUE
1780 CONTINUE

*WE NOW HAVE REPLACED THE CURRENT PATH WITH THE NEW ALTERNATE PATH.
DO 1785 V=POINT(PATH(NUMPATH,1),1),POINT(PATH(NUMPATH,1),2)

IF(INT(COSCAP(V,1)).EQ.PATH(NUMPATHI2)) THEN
ENDIF

1785 CONTINUE

108

"* WE CAN CLOSE alt~out AND RETURN TO SUBROUT.NE MODMSN
CLOSE(13)
RETURN

"* IF WE HAVE EXHAUSTED THE LIST OF CANDIDATE ALTERNATE PATHS AND FOUND
"* NONE WHICH SATISFY CONDITIONS 2 AND 3, WE SET CHNGIT TO 1 TO INDICATE
"* THAT A FEASIBLE SHIFT WILL OCCUR. WE CLOSE 'alt~oit' AND RETURN TO
"* SUBROUTINE MODMSN.
1650 CHNGIT=l

CLOSE(13)
RETURN
END

SUBROUTINE COUNTERO

INTEGER N,PATHNUMPATH(500,75),NUMCAR,
INTEGER NUMSNKNUMNODE(4999),BEGMSN(1000),ENDMSN(1 000)
INTEGER FLONUM(4999),NUM(4999),NiUMMSNK
INTEGER ITERPOINT(4999,2),ARCNUMCNT
INTEGER TRND)IS(60),TRNS(5 00)

REAL COSCAP(89999,8),lNFPRED(4999),DIST(4999)
REAL NODES(4999,4),TNODES(4999,4),ACCAP(I 000)
REAL TIME(l 000),TEMTIME.PTHFLO(5 00)
REAL EPSILONTISDIS(60)

CHARACTER NODIKO(4999,2)4
CHARACTER AC(1000)*4,CAO(1 000)*4
CHARACTER ITEMCAO*4,TEMACFT*4,ACFr(1000)*4,MSNCOD(1 000)* 1

COMMON /CONSTIV N, INF, NUMCAR, NUMSNK, NUMMSN, ITEREPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /MARK/ NIJMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,

C FLONUM, PATHNUM, PTHFLO, MSNCOD

OPEN(UNIT=1 1,FILE'countout',STATUS='UNKNOWN'FORM='FORMATTED')
*SORT ON ICAO

DO 1810 I=lNUMMSN
ICAO(I)=NODIKO(BEGMSN(I),1)
TIME(I)=NODES(BEGMSN(I),2)
ACFI'(I)=AC(I)

1810 CONTINUE
DO 1820 1=1 NUMMSN

TEMICAO='ZZZ
DO 1830 J=INUMMSN

IF(ICAO(J).LT.TEMICAO) THEN
TEMICAO=ICAO(J)
K=J

ENDIF
1830 CONTINUE

109

*SWITCH

TENUCAO=ICAO(I)
TEMTIME=TIME()
TEMACFr=AC~F(1)
ICAOQI)=ICAO(K)
TIME(I)=TIME(K)
ACFrTQ)=ACFT(K)
ICAO(K)--TEMICAO
TIME(K)--TEMTIME
ACFT(K)--TEMACFr

1820 CONTINUE
*NOW SORT ON ACIFT AT EACH ICAO

DO 1840 I= INUMSN
TEMACFr='zzzz'
DO 1850 J=INUMMSN

IFalCAO(J).EQ.ICAO(I)) ITHEN
IF(ACFT(J).LT.TEMACFT) THEN

TEMACFT=ACFT(J)
K=J

ENDIF
ELSE

GO0TO 1850
ENDIF

1850 CONTINUE
TEMICAO=ICAO(I)
TEMTIME=TIME)
ThMACFT=ACFTQl)
ICAOQl)=ICAO(K)
'flMEQI)=TIME(K)
ACFT(I)--ACFT(K)
ICAO(K)--TEMICAO
TIME(K)=TETImME
ACFT(K)=-TEMACFT

1840 CONTINUE
*NOW SORT ON TIME WITHIN EACH ICAO-ACFT PAIR

DO 1860 I=1,NUMMtSN
TEMTIME=INF
DO 1870 J=INUMMSN

IF(ICAO(J).EQ.ICAOQl)) THEN
IF(ACFT(J).EQ.ACFrQl)) THEN

IFMTME(J).LT.TEMTIME) THEN
TEMTIME=TIMEQJ)
K=J

ENDIF
ELSE

GOTO 1870
ENDIF

ELSE
GO0TO 1870

ENDIF
1870 CONTINUE

TEMICAO=ICAO(I)

110

TEMACFr--ACFF ()
ICAO([)=ICAO(K)
TIMEQ)=TIM[E(K)
ACFr(I)=ACFT(K)
ICAO(K)=TEM[ICAO
TIME(K)=TEM[TIME
ACFT(K)=TEMACFT

1860 CONTINUE
*NOW COUNT THE NUMBER OF TAKEOFFS AT EACH ICAO FOR EACH ACFT
*AT EACH TIME

CNT--
DO 1880 I=2,NUM[MSN

IF(ICAO(I).EQ.ICAOI- 1)) THEN
IF(ACFT%)EQACFT(I-1)) THEN

IF~fMEQ)EQ.TIMEQ.1)) THEN
CNT=CNT+ 1

ELSE
WRITE(1 1,1890)ICAOQ- 1),ACFT(I-l),TIM(- 1),CNT
CNT=1

ENDIF
ELSE

WRrITE11,1890)ICAO(I-1),ACFr(I- 1),TIMEQ- 1),CNT
CNT=l

ENDIF
ELSE

WRrITE11,1890)ICAO(I.1),ACFT(I-1),TIMEQ.1),CNT
CNT=l

ENDIF
1880 CONTINUE

WRrITE11,1890)ICAO(NUMMSN),ACFr(NUMMSN),TIME(NUMMSN),CNT
1890 FORM[AT(A4,2XA4,2XF7.3=2,4)

CLOSE(1 I)
RETURN
END

END - MIAIN PROGRAM

Appaenix C: Pirogm Creadng the Intial Sdke

This appendix is the program "makesked.f", which generates the initial schedule
"schedule.dat* using the input files contained in Appendices D-G.

PROGRAM MAKESKED

* CREATED 28 OCTOBER 1993
* THIS PROGRAM GENERATES THE SCHEDULE, CREATED AS A FILE CALLED
* 'tempsked.dat'. IT USES INPUT FROM 'schedule.raw' AND 'routes.dat'

CHARACTER STA(999,20)*4,STATYP(999,20)*1 ,ICAO(999)*4,AC(999)*4
CHARACTER BASE1(999)*4,BASE2(999)*4,JUNK5*4,MSNCOD(999)*1
INTEGER MSNCNT,ROUCNT,NODENUM,ROUTE(999),ROUNUM(999),TOTMSN
INTEGER ACTYPE(999),LEG
REAL START(999),GTIME(999),GRND(9),TIME(999),RON(999)
REAL REMAIN(9),JUNKIJUNK2,JUNK3,JUNK4,FLY(999),FLYTIME
REAL SPEED(9),CAP(9),ACCAP(999)

OPEN(UNIT= 1,FILE='jet.dat',STATUS=-'OLD',FORM=-'FORMATIED')
OPEN(UNIT=2,FILE= 'fly.dat',STATUS = 'OLD' ,FORM= 'FORMAITED')
OPEN(UNIT= 3,FILE = 'schedule.raw',STATUS = 'OLD' ,FORM 'FORMATrED')
OPEN(UJNIT=4,FILE= 'routes.dat' ,STATUS 'OLD' ,FORM= 'FORMATTED')
OPEN(UNIT= 5,FILE = 'schedule.dat',STATUS = 'UNKNOWN' ,FORM=

C 'FORMATTED')

* THE FOLLOWING LOOP READS THE SPEED FACTORS FOR EACH AIRCRAFT.
* THE ORDER IS THE SAME AS THE 'TYPES' IN NEXT SECTION. SPEED IS
* USED LATER TO CALCULATE THE FLYING TIME ALONG A PARTICULAR LEG

* FOR A PARTICULAR AIRCRAFT. THE FLYING TIMES, WHICH WILL LATER
* BE READ FROM 'fly.dat' ARE FOR THE C-141 ONLY. SPEED ACTS AS THE
* CONVERSION FACTOR FOR ALL OTHER AIRCRAFT. SPEED*(C141
* FLYTIME)=FLYING TIME FOR THE AIRCRAFT.

READ(1,*)
DO 10 I1 1,9

READ(I, *)JUNK1 ,JUNK5,SPEED(I),CAP(1)
10 CONTINUE

* THE FOLLOWING CODES WILL BE USED IN THE NEXT SECTION TO
* ESTABLISH AN APPROPRIATE GROUND TIME AND RON TIME FOR EACH
* MISSION:
* C005 = TYPE 1
* C141 = TYPE 2
* C130 = TYPE 3

112

* DC-= TYPE 4

* DCIO - TYPE 5
* B747 TYPE 6
* KC10 TYPE 7
* C017 -TYPE 8

* KC135= TYPE 9

* THE FOLLOWING STANDARD GROUND TIMES AND REMAIN OVER NIGHT
* (RON) TIMES ARE READ IN FROM 'jet.dat'. TO CONVERT THE TIME TO DAYS,

THE TIMES IN 'jet.dat' WILL BE DIVIDED BY 24 IN A LATER SECTION.

DO 20 I-=1,9
READ(1,*)JUNKI,GRND(),JUNK2,JUNK3,JUNK4,REMAIN(I)

20 CONTINUE

* THE FOLLOWING LOOP READS IN THE FLYING TIME DATA FROM 'fly.dat'.
* THE FIRST TWO COLUMNS ARE THE BASES OF THE LEG. THE NEXT

* COLUMN IS THE FLYING TIME FOR A C141.

LEG=0
DO 30 1 =1,1000000

READ(2,*,END=40)BASE1(I),BASE2(I)JUNKI ,FLY(I)
LEG=LEG+ 1

30 CONTINUE
40 CONTINUE

* THE FOLLOWING LOOP READS IN THE DATA FROM 'routes.dat'. THE FIRST
* COLUMN OF 'routes.dat' IS THE ROUTE NUMBER. THE FOLLOWING
* COLUMNS CONTAIN THE BASES ON THE ROUTE ALONG WITH THE TYPE OF
* BASE, WHERE
* 1 - MISSION ORIGIN
* 4 = STANDARD GROUND TIME
* 6 = RON
* 9 = MISSION TERMINATION

ROUCNT=0
DO 50 1= 1,100000

READ(4,60,END=70)ROUNUM(I),(STA(I,J),STATYP(IJ),J 1,20)
60 FORMAT(13, IX,20(IX,A4,A 1))

ROUCNT=ROUCNT+ 1
50 CONTINUE
70 CONTINUE

* THE FOLLOWING LOOP READS IN THE MISSION DATA FROM 'schedule.raw'.
* THE FIRST COLUMN IS THE ROUTE NUMBER, THE SECOND COLUMN IS THE
* AIRCRAFT TYPE, AND THE THIRD COLUMN IS THE START TIME OF THE
* MISSION.

113

MSNCNT=0
T0T`MSN=0
DO 80I= 1, 100000
MSNCOD(I)= 'C'

*THE FOLLOWING READ SHOULD BE USED IF 'schdule.raw' IS EVER UPDATED
*TO INCLUDE A CODE TO DISTINGUISH CARGO REQUIREMENTS 'C' AND
*FREQUENCY REQUIREMENTS 'F. AS IS, THE PROGRAM ASSUMES ALL ARE
*'C' UNLESS OTHERWISE INSTRUCTED.

c READ(3,*,END=90)ROUTEQl),AC(I),START(I),MSNCOD(I)
READ(3,*,END =90)ROUTE(I),AC(1),START(I)
IF(AC(I).EQ. 'C005') ACTYPE(I) = 1
IF(AC(I).EQ.'C141') ACTYPE(I)=2
EF(AC(I).EQ.'C130') ACTYPE(I)=3
IF(AC(I).EQ. 'DCO8') ACTYPE(I)=4
IF(AC(I).EQ. 'DC 10') ACTYPE(I)=5
IF(AC(I).EQ. 'B747') ACTYPE(1)=6
IF(AC(I).EQ. 'KC 10') ACTYPE(I)=7
IF(ACWl.EQ.'C017') ACTYPE(I)=8
EF(AC(l).EQ.'K135') ACTYPE(I)=9
TOTMSN=TOTMSN+ 1
GTIME(I)=GRND(ACTYPE(I))/24.0
RON([)= REMAIN(ACTYPE(I))/24.0
ACCAP(I) =CAP(ACTYPE(I))
IF(MSNCOD(I).NE.'F') MSNCOD(I)= 'C'

*THE FOLLOWING LOOP COUNTS THE NUMBER OF MISSIONS. THIS VALUE
* WILL BE THE TOP LINE OF THE OUTPUT.

DO 100 J =1,ROUCNT
IF(ROUTE(I).EQ.ROUNUM(J)) THEN

MSNCNT=MSNCNT +1
GOTO 80

ENDIF
100 CONTINNE
80 CONTINUE
90 CONTINUE

*THE FOLLOWING LOOPS COMBINE THE ABOVE INFORMATION INTO
* 'schedule.dat'.

WRITE(5,*)MSNCNT
DO 110 I= 1,TOTMSN

NODENUM=0
DO 120 J =1,ROUCNT

114

IF(ROUTEMI.EQ.ROUNUM(J)) THEN
DO 130 K- 1,20

NODENUM=NODENUM+ 1
ICAO(NODENUM)-STA(J,K)
IF(STATYP(J,K).NE.' '.AND.STATYP(J,K).NE. 1') THEN

"* THE FLYING TIME IS DEFAULTED TO .3 DAYS. SOME LEGS DO NOT APPEAR
"* IN FLY.DAT, SO A DEFAULT VALUE MUST BE USED.

FLYTIME= .3
DO 140 M =1,LEG

EF(((ICAO(NODENUM).EQ.BASE2(M)).AND.
C (ICAO(NODENUM-1).EQ.BASE1(M)))) THEN

FLYTIME- (FLY(M)*SPEED(ACTYPE(1)))/24.0
ENDIF

140 CONTINUE
IF(FLYTIME.EQ..3) THEN

DO 150 M =1,LEG
IF(((ICAO(NODENUMC .EQ.BASE1(M)).AND.

C (ICAO(NODENUM-1).EQ.BASE2(M)))) THEN
FLYTIME= (FLY(M)*SPEED(ACTYPE(I)))/24.0

ENDIF
150 CONTINUE

ENDIF
c IF(FLYTIME.EQ. .3) THEN
c WUMT(*,*)'CHECK ROUTE ',ROUTE(I)
c ENDIF

ENDIF
IF(STATYP(J,K).EQ.' 1') THEN

TIME(NODENUM) =START(I)
ELSE
IF(STATYP(J,K).EQ. '9') THEN

TIME(NODENUM)=TIME(NODENUM-1) +FLYTIME

*THIS SECTION WRITES TO THE OUTPUT FILE.

WRrTE(5, 155)NODENUM,AC(I),ACCAP(I),MSNCOD(I)
155 FORMAT(13, 1X,A4 ,F5. 1,2X,A1)

DO 160 L= 1,NODENUM
WRrrE(5,*)ICAO(L),TIME-(L)

160 CONTINUE
ELSE
IF(STATYP(J,K).EQ. W4) THEN

TIME(NODENUM)=TIME(NODENUM-1) +FLYTIME
NODENUM=NODENUM+ 1
TIME(NODENUM) =TIME(NODENUM-1) +GTIME(I)
ICAO(NODENUM) =STA(J,K)

115

ELSE
EF(STATYPQJ,K).EQ. 6') THEN

TIME(NODENUM) -TIME(NODENUM-1) +FLYTIME
NODENUM=NODENUM+ 1
TIME(NODENUM) =TIME(NODENUM-1) +RON(I)
ICAO(NODENUM) =STA(J,K)

ENDIF
ENDEF
ENDEF
ENDIF

130 CONTINUE
ENDIF

120 CONTINE
110 CONTINUE

WRrTE(*,)'PROGRAM COMPLETED'
END

116

Appxadir D: STORM/CARGPREP Scheduk for the Sub-PropMn

This appendix is an extract of the output file, "schedule.raw" generated by the STORM
and CARGPREP models. The first column is the number of the route to be flown by the
aircraft in column 2. The final column is the start time of the mission (days). For example,
line 1 indicates that a COO5 is to fly a mission along route 19 beginning at the 0.1 day point in
the planning horizon.

19 COOS 0.1
19 C005 15.1
23 C005 1.2
37 C005 2.3
56 C005 3.4
58 C005 4.5
58 C005 12.0
58 C005 19.5
58 C005 27.0

252 KC10 3.3
252 KCIO 5.6
252 KCIO 7.9
252 KCIO 10.2
252 KCIO 12.5
252 KCIO 14.8
252 KC1O 17.1
252 KCIO 19.5
252 KCIO 21.8
252 KC10 24.1
252 KC10 26.4
252 KCIO 28.7
252 KC10 1.0
253 KC10 4.4

117

Appeadix M. Abaft C4apade mad Grwlud/RON 71m,

This appendix shows the contents of Ujet.datu, containing aircraft information which
was used in the program "makeskad.f" (Appendix C). For lines 2 - 9, the columns of interest
are columns 3 and 4. Column 3 is the speed conversion factor. Because all flight times in file
"fly.dat" (Appendix F) are given in terms of the C141, the speed conversion factor was needed
to adjust flying times for the other aircraft. Column 4 is the capacity (tons) of each aircraft,
based on AMC/XPYR's use of 1.5 tons per pallet instead of 2.3 tons as stated in AFR 76-1.

For lines 10 - 17, column 5 is the authorized ground time (hours) and Column 6 is the
Remain-Over-Night (RON) time (hours) for the aircraft. The aircraft follow the order in lines
2-9. For example, line 10 corresponds to aC C0, line 11 to a C141, etc.

8 175
20 C005 0.97 54.00
30 C141 1.00 20.00
20 C130 1.39 9.00
10 DCO8 0.93 27.00
15 DCI0 0.92 45.00
10 B747 0.91 63.00
10 KCIO 0.92 33.00
60 C017 0.97 28.00
0.00 4.25 4.25 4.25 4.25 18.25 4.25 4.25
0.00 3.25 3.25 3.25 3.25 17.25 3.25 3.25
0.00 2.25 2.25 2.25 2.25 16.25 2.25 2.25
0.00 3.00 3.00 3.00 3.00 16.00 3.00 3.00
0.00 4.00 4.00 4.00 4.00 16.00 4.00 4.00
0.00 4.00 4.00 4.00 4.00 16.00 4.00 4.00
0.00 3.25 3.25 3.25 3.25 17.25 3.25 3.25
0.00 3.25 3.25 3.25 3.25 17.25 3.25 3.25

118

AppeIdIi F:I Hyng II I DaIe i Aibii

This appendix is an extract of the file "fly.dat", which contains the times required for a
C141 to fly from the airbase in column I to the airbase in column 2. This data was used in
"makesked.f" to generate the times associated with each airbase in the initial schedule. Note
that flight times are not necessarily commutative. For example, a flight from KDOV (Dover
AFB) to EDAR (Ramstein AB) requires 8.2 hours, while the flight from EDAR to KDOV is
9.5 hours.

KDOVKCHS 1.5 1.5 1.5 1.5 1.5 1.5 1.5
KDOV KTIK 3.3 3.3 3.3 3.3 3.3 3.3 3.3
KDOV KWRI 0.7 0.7 0.7 0.7 0.7 0.7 0.7
KDOV EDAR 8.2 8.2 8.2 8.2 8.2 8.2 8.2
KDOV EDAF 7.9 7.9 7.9 7.9 7.9 7.9 7.9
KDOV EDAF 8.2 8.2 8.2 8.2 8.2 8.2 8.2
KDOVEGUN 7.1 7.1 7.1 7.1 7.1 7.1 7.1
KDOV LETO 7.8 7.8 7.8 7.8 7.8 7.8 7.8

EDAR KDOV 9.5 9.5 9.5 9.5 9.5 9.5 9.5
EDAR KWRI 9.6 9.6 9.6 9.6 9.6 9.6 9.6
EDAREGUN 1.5 1.5 1.5 1.5 1.5 1.5 1.5
EDAR LETO 2.6 2.6 2.6 2.6 2.6 2.6 2.6
EDAR LPLA 4.6 4.6 4.6 4.6 4.6 4.6 4.6
EDARLIPA 1.5 1.5 1.5 1.5 1.5 1.5 1.5
EDARLIRN 2.1 2.1 2.1 2.1 2.1 2.1 2.1
EDAR LIRP 2.9 2.9 2.9 2.9 2.9 2.9 2.9
EDAR LICZ 2.6 2.6 2.6 2.6 2.6 2.6 2.6
EDAR LTAG 4.4 4.4 4.4 4.4 4.4 4.4 4.4
EDAR LLBG 4.3 4.3 4.3 4.3 4.3 4.3 4.3
EDAR HECA 4.7 4.7 4.7 4.7 4.7 4.7 4.7

RPMB FJDG 7.6 7.6 7.6 7.6 7.6 7.6 7.6
RPMB RPMK 0.5 0.5 0.5 0.5 0.5 0.5 0.5
RPMBRJTY 4.1 4.1 4.1 4.1 4.1 4.1 4.1
RPMB PGUA 3.8 3.8 3.8 3.8 3.8 3.8 3.8
RPMB RODN 2.4 2.4 2.4 2.4 2.4 2.4 2.4
VTBD FJDG 5.3 5.3 5.3 5.3 5.3 5.3 5.3
WSAP FJDG 5.0 5.0 5.0 5.0 5.0 5.0 5.0
WSAP RPMK 3.6 3.6 3.6 3.6 3.6 3.6 3.6

119

Appeadi G.: Roaerisd u aafgI/SWA Saab-Proble

This appendix shows the file "route.dat', which contains a list of the routes used as
input to *maesked.f". The first column is the route number. The remaining columns are the
ICAO designations of the airbases along the route. Appended to each ICAO is a numeric
suffix which identifies the airbase type. Suffix 1 indicates the origin airbase for the mission,
suffix 4 indicates that the aircraft will spend its authorized ground time at the airbase, suffix 6
indicates that the aircraft will remain at the airbase for its authorized RON time, and suffix 9
indicates the final destination of the mission.

3 EXXX1I KTIK4 CYQX4 EDAR4 EXXX9
56 KSUU1I KTIK4 KDOV6 EDAF6 KDOV6 KTIK4 KSUU9
58 KSUU1I KTIK4 KDOV6 EDAR6 KDOV6 KTIK4 KSUU9
59 KSUU1I KTIK4 KDOV6 EGUN6 EDAR4 EDAF6 KCHS6 KTIK4 KSUU9
137 KXXX1I KTIK4 EDAF4 KDOV4 KTIK4 KXXX9
180 KDOV I EDAF6 KDOV9
181 KDOV1 EDAR6 KDOV9
196 KCHS1 KNGU4 LPLA6 G00Y6 GLRB4 FZAA6 FITJ4 FZAA6 GOOY4 LPLA6

KNGU4 KCHS9
200 KDOV1 EDAR6 OJAF6 EDAR6 KDOV9
202 KCHS1I KNGU4 BIKF6 EGUN4 KCHS9
203 KDOV1I KCHS4 KNGU4 BIKF6 EGUN4 KDOV9
216 KCHS I KNGU4 LERT6 LICZ4 OBBI4 OMFJ6 OBB14 LICZ6 LERT4 LPLA6

KNGU4 KCHS9
224 KDOV1I EDAF6 OEDR4 EDAF6 KDOV9
225 KSUU1 KTIK4 KWRI6 LPLA4 EDAF6 KWRI6 KTIK4 KSUU9
230 EDARi LET04 LIPA6 EDAR4 EGUN4 EDAF9
231 EDAFI EGUN4 EDAR6 LIPA4 LET04 EDAF9
235 EDAF I OKBK4 OEDR6 OERY4 EDAF9
237 EDAF I LTAG4 EDAF9
239 EDAR1 LTAG4 EDAR9
241 KDOV1 LET06 KDOV9
242 KWRI1I LPLA6 KWRI9
249 EGUN I EDAR4 LIRP4 LIPA6 LET04 EDAR4 EGUN9
251 EGUN I EDAF4 LIPA6 LGIR4 LCRA4 LTAG6 LCRA4 LGIR4 LIPA6 EDAF4

EGUN9
252 KDOV1 EDAR4 LTAG4 EDAR4 KDOV9
255 KDOV1 KNGU4 LERT6 OBBI4 LICZ6 LERT6 KNGU4 KDOV9
259 KCHS1I KNGU4 LERT6 LIRN4 LICZ6 LIRN4 LERT6 KNGU4 KCHS9
260 KCHS I KNGU4 LERT6 LIRN4 LERT6 KNGU4 KCHS9
262 EDAFI EGUN4 EDAR4 LIPA4 LET04 EDAF4 LTAG6 EDAF4 LET04 LEPA4

EDAR4 EGUN4 EDAF9
264 EDAF I LIRN4 LICZ4 LERT6 LICZ4 LIRN4 EDAF9
265 KCHS1I KNGU4 LERT6 LIRN4 LICZ4 OBBI6 OMFJ4 OBB14 LICZ6 LTRN4

LERT6 LPLA4 KNGU4 KCHS9

120

266 EDAFI LIRN4 LICZ4 IJRN4 EDAF9
269 KDOV I EDAF4 OERY6 EDAF4 KDOV9
270 KWRII LPLA4 EDAR6 LPLA4 KWRI9
271 EDAF I OEDR6 EDAF9
292 EDAF 1 EDAR4 EDAF9
293 KDOV1I EDAR4 LLBG4 EDAR4 KDOV9
294 KNGUl LET04 LICZ4 HSSS4 HKNA4 LICZ4 LPLA4 KNGU9

121

Apeadi HII CIIedIa of IeI SWA SI b-Pitiil-

This appendix is the file "cargo.dat, which contains the cunulative amounts of the
commodities which arrive during the first week of the planning horizon. The first two
columns are the ICAO designations of the OD pair. The third column indicates the first week
of the planning horizon (1 equals week 2, 2 equals week 3, etc.). The final seven columns
represent the cumulative daily requirements. Each entry showing an inc,'ease from the
previous day translates into a cargo generation node in the network.

EDAR KNGU 0 .24 .48 .72 .96 1.20 1.44 1.68
EDAR LGIR 0 .30 .59 .89 1.19 1.48 1.78 2.08
EDAR LIRN 0 .18 .37 .55 .73 .92 1.10 1.28
EDAR OEDR 0 .85 1.69 2.54 3.39 4.23 5.08 5.93
EGUN KNGU 0 .78 1.56 2.34 3.12 3.90 4.68 5.46
EGUN LTAG 0 1.68 3.36 5.04 6.72 8.40 10.08 11.76
KCHS EDAF 0 .16 .20 .22 .46 .75 1.01 1.24
KDOV LGIR 0 .31 .37 .37 .73 1.15 1.64 2.12
KDOV LIPA 0 6.24 7.32 7.50 14.65 23.05 32.91 42.58
KDOV OEDR 0 6.26 7.35 7.53 14.7 23.14 33.04 42.75
KNGU LIPA 0 1.19 1.74 2.01 3.95 6.00 8.32 10.50
KTIK LIPA 0 .51 .77 .91 1.45 2.30 3.12 3.94
KTIK LTAG 0 .83 1.24 1.47 2.35 3.73 5.06 6.39
KTIK OEDR 0 .94 1.41 1.67 2.65 4.22 5.72 7.23
KTIK OERY 0 .50 .75 .89 1.42 2.26 3.07 3.87
LETO KDOV 0 8.19 16,37 24.56 32.75 40.93 49.12 57.31
LETO KTIK 0 .77 1.54 2.31 3.08 3.85 4.62 5.39
LETO KWRI 0 1.16 2.32 3.48 4.64 5.80 6.96 8.12
LETO LERT 0 .60 1.19 1.79 2.39 2.98 3.58 4.18
LETOLURN 0 .88 1.77 2.65 3.53 4.42 5.30 6.18

122

Apeadix I: Iai*al SchdWl for the E/SWA Sub-Problem

"This appendix is an extract of the file "schedule.dat, the initial schedule generated by
"makesked.f". "Schedule.dat" is used within "iterate.f" to generate the mission airbase nodes
in the network. The first line indicates that there are 213 missions in the mission set. The rest
of the file consists of 213 sub-blocks, each representing one mission. The first line of the sub-
block shows the route number of the mission, the number of nodes on the mission, the aircraft
flying the mission, the capacity of the aircraft, and the type of channel mission (C =
requirements, F = frequency of visit). The remaining lines of the sub-block show the ICAO
designation of the airbase and its time (day) within the planning horizon.

213
056 12 C005 54.0 C
KSUU 3.40000
KTIK 3.52125
KTIK 3.69833
KDOV 3.81554
KDOV 4.57596
EDAF 4.90737
EDAF 5.66779
KDOV 6.06792
KDOV 6.82833
KTIK 6.96171
KTIK 7.13879
KSUU 7.28025
058 12 C005 54.0 C
KSUU 4.50000
KTIK 4.62125
KTIK 4.79833
KDOV 4.91554
KDOV 5.67596
EDAR 5.99525
EDAR 6.75567
KDOV 7.13963
KDOV 7.90004
KTIK 8.03342
KTIK 8.21050

123

Appendix J:- User-dLefied Parwueten

"Th'is appendix contains a sample of input file "param.dat", containing the parameters
which the user can change to enhance program performance. Following the sample file is a
discussion of the range of values the parameters may take.

100 MAXIT
25 MAXALT
10 MAXTRN
I CARCRI
2 SORCRI
10 PASSES
2 TRNSHIP
0.00! EPSILON
0.0001 TIME EPSILON

MAXIT is the maximum number of iterations through the iterative improvement algorithm per
run of the program. The minimum value of this parameter is 1.

MAXALT is the maximum number of alternate paths considered by the shortest path
algorithm. Its minimum value is 0.

MAXTRN is the maximum number of transshipments allowed for a single piece of cargo. Its
minimum value is 0. While it has no upper bound, tests run with the E/SWA sub-problem
indicate that 10 is a realistic maximum.

CARCRI is the cargo priority, which determines the order in which cargo is flowed.
Acceptable values are I = default, 2 = FIFO, and 3 = largest to smallest.

SORCRI is the mission set sorting criteria, which determines the order in which the schedule
improvement algorithm examines the mission set. Acceptable values are I = default, 2 =
reverse of the order provided, 3 = descending order according to mission utilization, and 4 =

ascending order according to mission utilization.

PASSES is the maximum number of passes per iteration of the schedule improvement
algorithm. Its minimum value is 1. While it has no upper bound, tests run with the E/SWA
sub-problem indicate that 10 is a reasonable maximum.

TRNSHP is the transshipment policy. Acceptable values are 0 = no transshipments allowed, 1
= transshipments are allowed only at a pre-determined list of airbases, and 2 = transshipments
may occur at any airbase.

EPSILON and TIME EPSILON are used to prevent problems due to floating point arithmetic.
It is suggested that these remain unchanged.

124

Appendix K: Approed Twamuhpamt Bai for the EISWA S&b-Problk

This appendix contains the file "trnbasesu.dat. One of the options for the user-defined
parameter setting transshipment policy is to allow transshipments to occur only at pre-
determined airbases. These airbases may be the only ones within the channel system equipped
to handle transshipments. The following is a list of those airbases for the E/SWA sub-
problem. The number on line 1 is the total number of approved transshipment bases followed
by their ICAO designations.

18
EDAF
EDAR
EGUN
KCHS
KDOV
KNGU
KSUU
LERT
LETO
LGIR
LICZ
LIPA
LIRN
LLBG
LTAG
OEDR
OERY
OJAF

125

AppendizL.- Mission Wlizado Output

This appendix is an extract of an output file "postxxx.c*, containing mission utilization
information. For each mission a block is created showing the mission number, the route and
type of aircraft assigned to the mission, and the aircraft's capacity. Following this information
is the ordered list of airbases on the mission, with the utilization of the aircraft on the flight
into the airbase and the amount of flow on that flight. The utilization is the percentage of that
leg's capacity which was used. At the end of each mission block is a line showing the overall
mission utilization, which is a weighted value incorporating the individual legs' utilizations.

An output file like this is generated after every execution of the post-processing
subroutine (POSTPROC), numbered according to the iteration. For example, on the first
iteration, POSTPROC creates "postOO.c'.

UTILIZATION OF MISSIONS

UTILIZATION EQUALS THE PERCENTAGE OF A MISSION LEG
CAPACITY THAT IS USED.

ICAO UTIL FLOW

MISSION I (ROUTE = 56, ACFT = COOS, CAPACITY = 54.0 TONS)
KSUU - -

KTIK 0.00 0.00
KDOV 0.00 0.00
EDAF 0.00 0.00
KDOV 0.00 0.00
KTIK 0.00 0.00
KSUU 0.00 0.00
OVERALL UTILIZATION ON THIS MISSION: 0.

MISSION 2 (ROUTE = 58, ACFT = C005, CAPACITY = 54.0 TONS)
KSUU - -

KTIK 0.00 0.00
KDOV 0.03 1.38
EDAR 0.00 0.00
KDOV 0.00 0.00
KTIK 0.00 0.00
KSUU 0.00 0.00
OVERALL UTILIZATION ON THIS MISSION: 2.46219E-03

126

Appedix M:. Sam* flow PaUt,. Output

This appendix is an extract of flow pattern output generated by the schedule
improvement subroutine within "iterate.f. An output file containing this information is
created after every execution of the flow and schedule improvement subroutines, numbered
according to the iteration. For example, on the first iteration the flow subroutine creates
"cflow001.c" and the schedule improvement algorithm creates "paths0l0.c".

For each piece of cargo flowed a block is created showing that piece's time-in-system
(MS), the amount of the flow (FLOW), the cost of the flow (WTIS), the number of
transshipments along the path, and the path it used. The path information contains the ICAO
designation of the node, the mission on which that node appears, the time associated with the
node, and the node number.

Following the block for the last piece of flowed cargo are cumulative totals for the
amount flowed, the CWTIS, and the amount of cargo reflowed in the schedule improvement
subroutine (this only appears in output created by the schedule improvement subroutine).
These are followed by distributions for the number of transshipments and time-in-system.

TIS: 3.54801 FLOW: 0.240000
COST OF THIS FLOW: 0.851522
NO. OF TRANSSHIPMENTS: 1
ICAO MSN NO. TIME NODE NUMBER

EDAR 0 0.00 1
EDAR 22 2.31 338
EDAF 22 2.34 339
EDAF 22 3.06 340
KCHS 22 3.50 341
KCHS 44 3.50 726
KNGU 44 3.55 727
KNGU 0 0.00 2282

TIS: 0.726650 FLOW: 0.880000
COST OF THIS FLOW: 0.639452
NO. OF TRANSSHIPMENTS: 1
ICAO MSN NO. TIME NODE NUMBER

LETO 0 3.00 136
LETO 102 3.26 1334
EDAF 102 3.37 1335
EDAF 20 3.64 314
LIRN 20 3.73 315
URN 0 0.00 2284

127

TOTAL CARGO FLOWED (TONS): 191.000
TOTAL COST OF THIS FLOW: 297.106
TOTAL CARGO REFLOWED (TONS): 6.37000

TRANSSHIPMENT DISTRIBUTION

NUMBER OCCURENCES

0 6
1 94

TIME-IN-SYSTEM DISTRIBUTION

DAYS TONNAGE

0- 1 29.29
1-2 125.45
2-3 26.74
3-4 6.32
4-5 3.20

128

Appendix N: Reau of Each Iteration

"This appendix is the file "run.c", a log file which is created every time the iterative
improvement algorithm is run. At the beginning of the file is a listing of the parameters used
in the run. Tlen, for each iteration, the following are presented for the flow and schedule
improvement algorithms: 1) a transshipment distribution for the paths used in the flow, 2) a
TIS distribution for the cargo which was flowed, 3) the total amount of cargo flowed, and 4)
the CWTIS of the flow pattern. The amount of cargo flowed and the CWTIS are displayed
immediately after the TIS distribution. Note that CARGFLOW refers to the cargo flow
algorithm and MODMSN refers to the schedule improvement algorithm.

Parameters:

I MAXIT
25 MAXALT

1 MAXTRN
1 CARCRI
I SORCRI
1 PASSES
2 TRNSHIP

0.001 EPSILON
.0001 TIME EPSILON

CARGFLOW CALLED

TRANSSHIPMENT DISTRIBUTION

NUMBER OCCURENCES

0 7
1 93

T.I.S. DISTRIBUTION

DAYS TONS

0- 1 20.2800
1- 2 116.280
2- 3 29.9700
3- 4 18.5700
4- 5 3.75000
5- 6 1.31000
6- 7 0.840000

191.000 362.439

129

MODMSN CALLED

TOTAL CARGO REFLOWED (TONS): 6.37000

TRANSSHIPMENT DISTRIBUTION

NUMBER OCCURENCES

0 6
1 94

TIME-IN-SYSTEM DISTRIBUTION

DAYS TONNAGE

0- 1 29.29
1- 2 125.45
2- 3 26.74
3-4 6.32
4-5 3.20

191.000 297.106
ITERATION 1 COMPLETED.

CARGFLOW CALLED

TRANSSHIPMENT DISTRIBUTION

NUMBER OCCURENCES

0 6
1 98

T.I.S. DISTRIBUTION

DAYS TONS

0- 1 40.0400
1- 2 119.860
2- 3 30.2900
3- 4 6.08000
4- 5 5.40000

201.670 310.503

130

Appendix 0: Test Runm

This appendix contains a complete list of the runs used for testing.

Run Final Final
MAXTRN CARCRI SORCRI PASSES REFLOW Flow CWTIS

I 1 10 on 211-93 247.32
2 2 1 1 10 n 226-93 254-98
3 3 I 1 10 229.99 258.90
4 10 1 l 10 229.99 232.79
5 1 1 2 10 n 203.19 23- 13
6 2 12 10 an 225.48 265-60
7 3 1 2 to on 229.99 241.17

g 10 1 2 to n 229.99 231-44
9 1 3 10 202-7L 232.49
10 2 1 3 10 E - 226.45 281-74
11 3 1 3 10 on 229.99 261.48

12 3 10 on 229.99 257-19
1 ±] 4 10 on 212.07 241-72

14 2 1 4 1 1 on 22-.47 252.15
15 a w w 0o 229.99 242.30
16 IQ 4 10 on 229-99 235-49
17 1 L 1 10 Off 191-00 260-62
18 2 W 1 10 off 227-34 310.97
19 3 1 1 10 off 229.99 284-R9
2 10 1 1 10 off 229-99 284-89
21 1 L 2 10 Off 191-00 260.62
22 2 1 2 0 Off 227-34 310.97
2 10 1 2 10 off 229-99 284-99

W 1 3 10 off 191-00 260-62
26 2 1 3 10 ff 227.34 310.97
27 3 1 3 0 Off 229-99 284-89
2L 10 1 3 10 Off 229-0 22.
22 W 1 1 4 10 Off 191.00 260-62
30 2 1 4 10 Off 227-34 310-97
31 3 1 4 10 off 229.99 2W4-89
32 10 1 4 10 off 229.99 284.99
33 10 1 1 Wn on 2115.1 18151.0
34 10 2 1 1W an 22989 121974.0
35 10 3 1 10 on 2227.7 1201700

In all test runs, the following parameters remained constant:

MAXIT = 100
MAXALT = 25
TRNSHP =2
EPSILON = .001
TIME EPSILON = .0001

131

Recall that:

MAXTRN = the maximum number of transshipments allowed per piece of cargo flowed
CARCRI = the cargo flow priority
SORCRI = the mission set sorting criteria
PASSES = the number of passes per iteration of the schedule improvement algorithm
REFLOW = reflow mechanism
TRNSHP - the transshipment policy

132

Appenix P: Output Coisrsnon Subrouti

This appendix is the FORTRAN program "makeraw.f", which converts the schedule
created by "iterate.f" back into the format required for validation by CARGOSIM.

PROGRAM MAKERAW

* THIS PROGRAM TAKES THE SCHEDULE CREATED BY THE SCHEDULE
* IMPROVEMENT ALGORITHM IN THE HA AND CONVERTS IT BACK INTO THE

FORMAT OF 'schedule.raw' FOR VALIDATION IN CARGOSIM

REAL TIME
INTEGER ROUTE,NODES
CHARACTER*4 ACFT,ICAO

OPEN(UNIT= 1,FILE =-'newsched.dat',STATUS ='OLD',FORM= 'FORMATTED')
OPEN(UNIT- 2,FILE- ='newsched.raw' ,STATUS = 'UNKNOWN',

c FORM= 'FORMATTED')

READ(1,*)

5 READ(1 ,*,END=30)ROUTE,NODES,ACFT
READ(1,*,END=30)ICAO,TIME
WRITE(2,10)ROUTE,ACFT,TIME

10 FORMAT(13,3X,A4,3X,F7.4)

DO 20 I= 1,NODES-1
READ(I,*,END =30)

20 CONTINUE

GOTO 5

30 WRITE(*,*)'PROGRAM COMPLETED'

END

133

B kiogmphy

Ackley, M., W. Carter, G. Hughes, J. Litko, K. Ware, A. Whisman, and R. Roehrkasse.
Optimization Applications at the Military Alrlift Command. Importance and Difficultles.
Unpublished paper provided to the Second International Conference on Industrial and Applied
Mathematics, Washington D.C., July 8-12, 1991.

Bazaraa, Mokhtar S., John J. Jarvis and Hanif D. Sherali. Linear Programming and Network
Flows. New York: John Wiley & Sons, 1990.

Bodin, Lawrence D., Bruce Golden, Ariang Assad and Michael Ball. "Routing and
Scheduling of Vehicles and Crews: The State of the Art," Computers in Operations Research,
10: 63-209 (1983).

Bodin, Lawrence D. "Twenty Years of Routing and Scheduling," Operations Research, 39:
571-579 (July-August 1990).

Borsi, MAJ John. Account of a personal interview with Captain Michael Del Rosario, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, 6 August 1992.

Borsi, MAJ John. Personal interview. Air Force Institute of Technology, Wright-Patterson
AFB OH. 15 July 1993.

Borsi, MAJ John. Personal interview. Air Force Institute of Technology, Wright-Patterson
AFB OH. 23 July 1993.

Borsi, MAJ John. Personal interview. Air Force Institute of Technology, Wright-Patterson
AFB OH. 4 February 1994.

Carter, Brand and Joseph R. Litko. Simulating the Air Mobility Command Channel Cargo
System. Unpublished paper provided by Lt. Jonathan Robinson, Command Analysis Group,
Air Mobility Command, HQ AMC/XPYR, Scott AFB, IL.

Del Rosario, Capt Michael. Determining Cargo Flow for Air Mobility Command's Channel
Cargo System. MS thesis, AFIT/GOR/ENS/93M-04. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1993.

"A Description of the STORM Linear Programming Problem for Analysis of Channel Cargo
Routing." AMC working paper provided by ILT J. Robinson, Command Analysis Group, Air
Mobility Command, HQ AMC/XPYR, Scott AFB, IL. 20 September 1993.

DoD Materiel Management Regulation (DoD 4140. I-R). Office of the Assistant Secretary of
Defense (Production & Logistics).

134

Harel, David. Algorithmics: The Spirit of Computing. Massachusetts: Addison-Wesley

Publishing Company, 1992.

Lin, S. "Heuristic Programming as an Aid to Network Design," Networks, 5: 3343 (1975).

Moul, Capt Justin E. A Method for Determining Schedule Delay Information in a Channel
Cargo Route Network Schedule. MS thesis, AFIT/GST/ENS/92M-05. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, June 1992.

Rau, Capt Gregory S. Scheduling Air Mobility Command's Channel Cargo Missions. MS
thesis, AFIT/GOR/ENS/93M-19. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1993.

Robinson, ILT Jonathan. Personal interview and data derived from various AMC studies.
Command Analysis Group, Air Mobility Command, HQ AMC/XPYR, Scott AFB, IL. 20
September 1993.

Robinson, ILT Jonathan. Personal interview. Command Analysis Group, Air Mobility
Command, HQ AMC/XPYR, Scott AFB, IL. 1 February 1994.

Shepherd, Capt Dave. "Peacetime Airlift: Job #1, Too!" Defense Transportation Journal,
Vol. 46: 11-19 (1990).

Syslo, Maciej M., Narsingh Deo, and Janusz S. Kowalik. Discrete Optimization Algorithms
with Pascal Programs. New Jersey: Prentice-Hall, Inc., 1983.

Whisman, Alan W. Channel Routing Model. Unpublished paper provided by Lt. Jonathan
Robinson, Command Analysis Group, Air Mobility Command, HQ AMC/XPYR, Scott AFB,
IL.

Zanakis, Stelios H. and James R. Evans. "Heuristic 'Optimization': Why, When, and How to
Use It," Interfaces: 84-91 (October 1981).

Zanakis, Stelios H., James R. Evans and Alkis A. Vazacopoulos. "Heuristic Methods and
Applications: A Categorized Survey," European Journal of Operational Research, 43: 88-
110 (1989).

135

Visa

Captain John Fitzsimmons Jr. was born 11 August 1966 in West Allis, Wisconsin. He

graduated from Hartford Union High School in 1984 and attended the United States Air Force

Academy, graduating with a Bachelor of Science (specialty: Physics) in June 1988. He was

assigned as a scientific analyst in the 86th Fighter Weapons Squadron at Eglin AFB, Florida.

In this position, he performed battle damage analysis on simulated targets, debriefed tactical

aircrews, evaluated a variety of air-to-ground precision guided munitions, maintained several

computer databases, and acted as the project analyst on annual reports. After this assignment,

he entered the Air Force Institute of Technology in August 1992 to pursue a Masters of

Science in Operations Research. Following graduation, Captain Fitzsimmons is to be assigned

to the 57th Test Group, Nellis AFB, Nevada.

Permanent Address: 7243 Roosevelt Rd.
Hartford, Wisconsin 53027

136

VNo

Captain John Walker was born on 6 September 1966 in Beckley, West Virginia. He

graduated from Oceana High School in 1984 and attended West Virginia University,

graduating in December 1988 with a Bachelor of Arts degree in Mathematics. Commissioned

through AFROTC in January 1989, Captain Walker was assigned as an analyst with the

Command Analysis Group, HQ Military Airlift Command (Air Mobility Command), Scott

AFB, IL, where he served from March 1989 to August 1992. He entered the School of

Engineering, Air Force Institute of Technology, in August 1992. Following graduation,

Captain Walker will be assigned to the Air Force Personnel Operations Agency at the

Pentagon.

Permanent address: P.O. Box 247
Kopperston, WV 24854

137

I Form ApprovedREPORT DOCUMENTATION PAGE orBmo Approvae

Public reportmg bu•den for this co:lection of nforr JE'on is estimated to a.erage 1 nour per Cesvorse. including the time for revewing nstructions, searchrcr e. sting data sources.
gathering and maintaining the data needed, and cc.-.qeting and reviewing tre collection Of infOrrmation Send commnrents regarding this burden estimate or anv othner aspec of t•is
collectiO• 0' "nformatiOn. .n1cludmng suggestion% tot reducing this ouroen to fvasrrngton Hieadquarters Services. ODrectorate for information Operations and Reports 12is ;eferson
Dais Highmway. Suite 1204. Arlington. VA 22202-4302, and to the Olice of Management and Budge, Paperwork Reduction Project (0704-0188). Washington DC 20503

1. AGENCY USE ONLY (Leave blank) j 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I March 1994 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A HEURISTIC APPROACH TO DETERMINING CARGO FLOW AND
SCHEDULING FOR AIR MOBILITY COMMAND'S CHANNEL

6. AUTHOR(S)

John D. Fitzsimmons Jr., Captain, U.S. Air Force
John M. Walker, Captain, U.S. Air Force

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, AFlT/GOR/ENS/94M-05
WPAFB, OH 45433-6583

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This research investigated a heuristic approach to schedule aircraft for the channel cargo system of the United
States Air Force's Air Mobility Command (AMC). Given cargo/frequency of visit requirements, a fleet of
aircraft, and possible routes, the objective of this research was to develop, implement, and test an iterative
procedure to efficiently schedule and load aircraft in order to maximize the flow of cargo through the channel
cargo system. Once a level of flow was established, attempts were made to minimize cost in terms of
cumulative weighted time-in-system (CWTIS). A minimum cost flow heuristic, incorporating a successive
shortest path algorithm, was coupled with a critical arc schedule improvement heuristic. Our procedure
iterated between these two heuristics to generate a cargo flow pattern and aircraft schedule. This research
demonstrated the usefulness and efficiency of this heuristic in planning airlift for the channel cargo system.
The FORTRAN programs which implement the heuristics are compatible with current AMC
scheduling/advance planning tools. Given this compatibility, additional testing in conjunction with AMC's
current planning tools (STORM, CARGPREP, and CARGOSIM) is warranted. Pending successful testing in
this environment, implementation of these methods is recommended.

14. SUBJECT TERMS 15 NUMBER OF PAGES

Heuristics, Channel Cargo System, Networks, Schedule, JAR

Multicommodity, Shortest-Path, Interchange, Flow Pattern 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard ;orm 298 (Rev 2-89)

Prescrrbd bir ANSI S•td Z39-'8
298-1 ,j2

